

You have downloaded a document from RE-BUŚ
 repository of the University of Silesia in Katowice

Title: On the continuous dependence of solutions to orthogonal additivity problem on given functions

Author: Karol Baron

Citation style: Baron Karol. (2015). On the continuous dependence of solutions to orthogonal additivity problem on given functions. "Annales Mathematicae Silesianae" (Nr 29 (2015), s. 19-23), doi 10.1515/amsil-20150002

Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych Polska - Licencja ta zezwala na rozpowsze chnianie, przedstawianie i wykonywanie utworu jedynie w celach niekomercyjnych oraz pod warunkiem zachowania go w oryginalnej postaci (nie tworzenia utworów zaleznych).

ON THE CONTINUOUS DEPENDENCE OF SOLUTIONS TO ORTHOGONAL ADDITIVITY PROBLEM ON GIVEN FUNCTIONS

Karol Baron

Abstract

We show that the solution to the orthogonal additivity problem in real inner product spaces depends continuously on the given function and provide an application of this fact.

Let E be a real inner product space of dimension at least 2 .
A function f mapping E into an abelian group is called orthogonally additive, if

$$
f(x+y)=f(x)+f(y) \quad \text { for all } x, y \in E \text { with } x \perp y
$$

It is well known, see [3, Corollary 10] and [1, Theorem 1], that every orthogonally additive function f defined on E has the form

$$
\begin{equation*}
f(x)=a\left(\|x\|^{2}\right)+b(x) \quad \text { for } x \in E \tag{1}
\end{equation*}
$$

where a and b are additive functions uniquely determined by f. Consequently, given an abelian group G we have an operator Λ which to any orthogonally

Received: 10.09.2014.
(2010) Mathematics Subject Classification: 39B55, 39B52, 39B82.

Key words and phrases: orthogonal additivity, inner product space, continuous dependence on the given function, topological group, Tychonoff topology, nowhere dense set.
additive $f: E \rightarrow G$ assigns a pair (a, b) of additive functions such that (1) holds, i.e.,

$$
\begin{equation*}
\Lambda f=(a, b) \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
a: \mathbb{R} \rightarrow G, \quad b: E \rightarrow G \quad \text { are additive and (1) holds. } \tag{3}
\end{equation*}
$$

Putting

$$
\operatorname{Hom}_{\perp}(E, G)=\{f: E \rightarrow G \mid f \text { is orthogonally additive }\}
$$

and

$$
\operatorname{Hom}(S, G)=\{f: S \rightarrow G \mid f \text { is additive }\}
$$

for $S \in\{\mathbb{R}, E\}$ we see that $\Lambda: \operatorname{Hom}_{\perp}(E, G) \rightarrow \operatorname{Hom}(\mathbb{R}, G) \times \operatorname{Hom}(E, G)$ given by (2) and (3) is an additive bijection.

To consider its continuity assume that G is a topological group and given a non-empty set S consider G^{S} of all functions from S into G with the usual addition and with the Tychonoff topology; clearly G^{S} is a topological group. In what follows we consider $\operatorname{Hom}_{\perp}(E, G)$ and $\operatorname{Hom}(S, G)$ for $S \in\{\mathbb{R}, E\}$ with the topology induced by G^{E} and G^{S}, respectively.

The main result of this note reads.

Theorem 1. Isomorphism $\Lambda: \operatorname{Hom}_{\perp}(E, G) \rightarrow \operatorname{Hom}(\mathbb{R}, G) \times \operatorname{Hom}(E, G)$ given by (2) and (3) is a homeomorphism.

Proof. To show that Λ is continuous at zero fix neighbourhoods $\mathcal{V} \subset$ $\operatorname{Hom}(\mathbb{R}, G)$ and $\mathcal{W} \subset \operatorname{Hom}(E, G)$ of zeros. We may assume

$$
\mathcal{V}=\left\{a \in \operatorname{Hom}(\mathbb{R}, G): a\left(\alpha_{n}\right) \in U \text { for } n \in\{1, \ldots, N\}\right\}
$$

and

$$
\mathcal{W}=\left\{b \in \operatorname{Hom}(E, G): b\left(x_{n}\right) \in U \text { for } n \in\{1, \ldots, N\}\right\}
$$

with a neighbourhood U of zero in G and some $\alpha_{1}, \ldots, \alpha_{N} \in \mathbb{R}, x_{1}, \ldots, x_{N} \in$ $E, N \in \mathbb{N}$. Choose a symmetric neighbourhood U_{0} of zero in G such that $U_{0}+U_{0} \subset U$ and $x_{N+1}, \ldots, x_{2 N} \in E$ with

$$
2\left\|x_{N+n}\right\|^{2}=\left|\alpha_{n}\right| \quad \text { for } n \in\{1, \ldots, N\}
$$

and put

$$
\begin{aligned}
\mathcal{U}=\bigcap_{n=1}^{N}\{f \in & \left.\operatorname{Hom}_{\perp}(E, G): f\left(\frac{1}{2} x_{n}\right) \in U_{0} \text { and } f\left(-\frac{1}{2} x_{n}\right) \in U_{0}\right\} \\
& \cap \bigcap_{n=N+1}^{2 N}\left\{f \in \operatorname{Hom}_{\perp}(E, G): f\left(x_{n}\right) \in U_{0} \text { and } f\left(-x_{n}\right) \in U_{0}\right\}
\end{aligned}
$$

Clearly \mathcal{U} is a neighbourhood of zero in $\operatorname{Hom}_{\perp}(E, G)$ and to show that $\Lambda(\mathcal{U}) \subset$ $\mathcal{V} \times \mathcal{W}$ fix an $f \in \mathcal{U}$. Then we have (2) and (3) and, by (3),

$$
b\left(x_{n}\right)=2 b\left(\frac{1}{2} x_{n}\right)=f\left(\frac{1}{2} x_{n}\right)-f\left(-\frac{1}{2} x_{n}\right) \in U_{0}+U_{0} \subset U
$$

for $n \in\{1, \ldots, N\}$, whence $b \in \mathcal{W}$, and

$$
\begin{aligned}
a\left(\alpha_{n}\right) & \in\left\{a\left(\left|\alpha_{n}\right|\right),-a\left(\left|\alpha_{n}\right|\right)\right\} \\
& =\left\{2 a\left(\left\|x_{N+n}\right\|^{2}\right),-2 a\left(\left\|x_{N+n}\right\|^{2}\right)\right\} \\
& =\left\{f\left(x_{N+n}\right)+f\left(-x_{N+n}\right),-\left(f\left(x_{N+n}\right)+f\left(-x_{N+n}\right)\right)\right\} \\
& \subset U_{0}+U_{0} \subset U
\end{aligned}
$$

for $n \in\{1, \ldots, N\}$, whence $a \in \mathcal{U}$.
To get continuity of Λ^{-1} it is enough to observe that the homomorphism $\Lambda_{1}: \operatorname{Hom}(\mathbb{R}, G) \rightarrow \operatorname{Hom}_{\perp}(E, G)$ given by

$$
\left(\Lambda_{1} a\right)(x)=a\left(\|x\|^{2}\right) \quad \text { for } x \in E
$$

is continuous.
Corollary 1. If G is Hausdorff and $\operatorname{Hom}(\mathbb{R}, G) \neq\{0\}$, then $\operatorname{Hom}(E, G)$ is closed and nowhere dense in $\operatorname{Hom}_{\perp}(E, G)$.

For the proof the following lemma will be used.

Lemma 1. If $\operatorname{Hom}(\mathbb{R}, G) \neq\{0\}$, then $\operatorname{Hom}(\mathbb{R}, G)$ is not discrete.
Proof. Fix arbitrarily a positive integer N, reals $\alpha_{1}, \ldots, \alpha_{N}$ and a neighbourhood U of zero in G. To show that the set

$$
\begin{equation*}
\left\{a \in \operatorname{Hom}(\mathbb{R}, G): a\left(\alpha_{n}\right) \in U \text { for } n \in\{1, \ldots, N\}\right\} \tag{4}
\end{equation*}
$$

is different from $\{0\}$ let H be a Hamel basis of \mathbb{R} (i.e., a basis of the vector space \mathbb{R} over the field \mathbb{Q} of rationals) and let H_{0} be a finite subset of H such that

$$
\alpha_{n} \in \operatorname{Lin}_{\mathbb{Q}} H_{0} \quad \text { for } n \in\{1, \ldots, N\} .
$$

Since (see [2, Theorem 4.2.3]) $\operatorname{card} H=\mathfrak{c}$, there exists a function $c_{0}: H \rightarrow \mathbb{R}$ such that

$$
c_{0}\left(H_{0}\right)=\{0\} \quad \text { and } \quad c_{0}\left(H \backslash H_{0}\right)=H .
$$

Let $c: \mathbb{R} \rightarrow \mathbb{R}$ be the additive extension of c_{0} and consider an $a \in \operatorname{Hom}(\mathbb{R}, G) \backslash$ $\{0\}$. Clearly $a \circ c$ is additive and

$$
a \circ c\left(\alpha_{n}\right) \in a\left(c\left(\operatorname{Lin}_{\mathbb{Q}} H_{0}\right)=a\left(\operatorname{Lin}_{\mathbb{Q}} c_{0}\left(H_{0}\right)\right)=a(\{0\})=\{0\}\right.
$$

for $n \in\{1, \ldots, N\}$ which proves that $a \circ c$ belongs to set (4). To see that $a \circ c \neq 0$ consider a $\beta \in \mathbb{R}$ with $a(\beta) \neq 0$. Then

$$
\beta \in \operatorname{Lin}_{\mathbb{Q}} H=\operatorname{Lin}_{\mathbb{Q}} c\left(H \backslash H_{0}\right) \subset c\left(\operatorname{Lin}_{\mathbb{Q}} H\right)=c(\mathbb{R})
$$

whence $\beta=c(\alpha)$ for some $\alpha \in \mathbb{R}$ and $a \circ c(\alpha)=a(\beta) \neq 0$.
Proof of Corollary [1. By the standard argument the set $\operatorname{Hom}(E, G)$ is closed in G^{E}. Since

$$
\operatorname{Hom}(E, G)=\Lambda^{-1}(\{0\} \times \operatorname{Hom}(E, G))
$$

and Λ is a homeomorphism, it is enough to observe that according to Lemma 1 the set $\{0\} \times \operatorname{Hom}(E, G)$ is nowhere dense in $\operatorname{Hom}(\mathbb{R}, G) \times \operatorname{Hom}(E, G)$.

We finish with some remarks.
Remarks.

1. Since projections are open, if $\operatorname{Hom}(\mathbb{R}, G)$ is discrete, then so is also G. The converse is not true as the next remark shows.
2. If G is uniquely divisible and $G \neq\{0\}$, then $\operatorname{Hom}(\mathbb{R}, G) \neq\{0\}$ and, by Lemma 1. $\operatorname{Hom}(\mathbb{R}, G)$ is not discrete.
3. $\operatorname{Hom}(\mathbb{R}, \mathbb{Z})=\{0\}$.
4. The following three sentences are equivalent:

$$
\operatorname{Hom}(\mathbb{R}, G)=\{0\}, \quad \operatorname{Hom}(E, G)=\{0\}, \quad \operatorname{Hom}_{\perp}(E, G)=\{0\} .
$$

The reader interested in further problems connected with orthogonal additivity is referred to the survey paper [4] by Justyna Sikorska.

Acknowledgement. The research was supported by the Silesian University Mathematics Department (Iterative Functional Equations and Real Analysis program).

References

[1] Baron K., Rätz J., On orthogonally additive mappings on inner product spaces, Bull. Polish Acad. Sci. Math. 43 (1995), 187-189.
[2] Kuczma M., An introduction to the theory of functional equations and inequalities. Cauchy's equation and Jensen's inequality, Second edition (edited by A. Gilányi), Birkhäuser Verlag, Basel, 2009.
[3] Rätz J., On orthogonally additive mappings, Aequationes Math. 28 (1985), 35-49.
[4] Sikorska J., Orthogonalities and functional equations, Aequationes Math. 89 (2015), 215-277.

Institute of Mathematics
University of Silesia
Bankowa 14
40-007 Katowice
Poland
e-mail: baron@us.edu.pl

