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Abstract

This Dissertation concerns the transport properties of a strongly–correlated one–dimensional system

of spinless fermions, driven by an external electric field which induces the flow of charges and energy

through the system. Since the system does not exchange information with the environment, the

evolution can be accurately followed to arbitrarily long times by solving numerically the time–dependent

Schrödinger equation, going beyond Kubo’s linear response theory.

The thermoelectric response of the system is here characterized, using the ratio of the induced

energy and particle currents, in the nonequilibrium state under the steady applied electric field. Even

though the equilibrium response can be reached for vanishingly small driving, strong fields produce

quantum–mechanical Bloch oscillations in the currents, which disrupt the proportionality of the currents.

The effects of the driving on the local state of the ring are analyzed via the reduced density matrix of

small subsystems. The local entropy density can be defined and shown to be consistent with the laws of

thermodynamics for quasistationary evolution. Even integrable systems are shown to thermalize under

driving, with heat being produced via the Joule effect by the flow of currents. The spectrum of the

reduced density matrix is shown to be distributed according the Gaussian unitary ensemble predicted by

random–matrix theory, both during driving and a subsequent relaxation.

The first fully–quantum model of a thermoelectric couple is realized by connecting two correlated

quantum wires. The field is shown to produce heating and cooling at the junctions according to the

Peltier effect, by mapping the changes in the local entropy density. In the quasiequilibrium regime, a

local temperature can be defined, at the same time verifying that the subsystems are in a Gibbs thermal

state. The gradient of temperatures, established by the external field, is shown to counterbalance the

flow of energy in the system, terminating the operation of the thermocouple. Strong applied fields lead

to new nonequilibrium phenomena. At the junctions, observable Bloch oscillations of the density of

charge and energy develop at the junctions. Moreover, in a thermocouple built out of Mott insulators, a

sufficiently strong field leads to a dynamical transition reversing the sign of the charge carriers and the

Peltier effect.

Keywords: Nonequilibrium transport, many–body fermionic system, thermalization, thermoelectri-

cal effect, quantum thermodynamics, Bloch oscillations, integrable systems, computational methods,

random matrix theory, entropy density, time–dependent Schrödinger equation, linear response theory,

thermocouple, local temperature.



iv

Streszczenie

Rozprawa doktorska poświęcona jest teoretycznym badaniom własności transportowych jednowy-

miarowego układu złożonego z silnie oddziałujących bezspinowych fermionów. Układ wzbudzany jest

zmieniającym się w czasie polem magnetycznym, które indukuje przepływ ładunku i energii. Ponieważ

układ nie wymienia informacji z otoczeniem, jego ewolucja może być śledzona dla dowolnie długich

czasów poprzez numeryczne rozwiązanie równania Schrödingera. Pozawala to badać odpowiedź układu

poza teorią Kubo liniowej reakcji.

Odpowiedź termoelektryczna została scharakteryzowana dla stanów kwazistacjonarnych oraz da-

lekich od równowagi, poprzez wyznaczenie stosunku prądów energii i ładunku indukowanych przez

stałe pole elektryczne. Wyniki numeryczne uzyskane dla słabych pól są zgodne z teorią liniowej reakcji

układu, jednak dla silniejszych pól pokazujemy, że zarówno prąd cząstek jak i prąd energii podlegają

oscylacjom Blocha, co zaburza proporcjonalność pomiędzy obiema wielkościami.

Wpływ zewnętrznego pola na lokalne własności układu, analizowany jest przy pomocy zredukowanej

macierzy gęstości wyznaczonej dla niewielkiego podukładu. Wielkość ta pozwala także zdefiniować

gęstość entropii, która dla procesów kwazistacjonarnych jest spójna z zasadami termodynamiki. Po-

każemy, że w obecności pola elektrycznego także układy całkowalne podlegają kwazirównowagowej

ewolucji, a ich energia stopniowo rośnie w czasie na skutek wydzielania ciepła Joule’a. Pokazujemy

także, że w obecności zewnętrznego pola oraz po jego wyłączeniu, widmo zredukowanej macierzy

gęstości odpowiada unitarnemu rozkładowi gaussowskiemu dla macierzy przypadkowych.

Zasadnicza część rozprawy poświęcona jest sformułowaniu i analizie pierwszego w pełni kwan-

towego modelu termopary, zbudowanej z dwóch jednowymiarowych układów kwantowych. Model

uwzględnia obecność oddziaływań wielociałowych. Śledząc ewolucję czasową gęstości entropii w róż-

nych punktach układu, analizujemy działanie termopary w obecności pól elektrycznych o dowolnym

natężeniu. W reżimie kwazistacjonarnym, małe podukłady termopary są w stanie termicznym Gibbsa,

można więc zdefiniować lokalną temperaturę. Pokazujemy, że po włączeniu pola temperatura silnie

rośnie w otoczeniu jednego ze złącz a maleje w otoczeniu drugiego, co odtwarza efekt standardowy

Peltiera. W obecności silniejszych pól obserwujemy efekty nowe nierównowagowe. W szczególności w

otoczeniu złącz, gęstość nośników oraz gęstość energii podlegają oscylacjom Blocha. Ponadto w przy-

padku termopary zbudowanej z domieszkowanych izolatorów Motta, dostatecznie silne pole może

prowadzić do zmiany znaku nośników prądu i odwrócenie efektu Peltiera.

Słowa kluczowe: Transport nierównowagowy, wielociałowe układy fermionów, termalizacja, efekt

termoelektryczny, termodynamika kwantowa, oscylacje Blocha, układy całkowalne, teoria macierzy

losowych, gęstość entropii, równanie Schrödingera zależne od czasu, teoria liniowej reakcji, termopara,

lokalna definicja temperatury.
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2.1.2 Lanczős based function evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.1.3 Krylov based propagator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Time–Dependent Schrödinger equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 Thermodynamical averages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.1 Chebyshev expansions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.2 Operator valued expansions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.3 Chebyshev time evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.4 Density of States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3.5 Thermal expectation values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3.6 Reconstruction from the moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

v



CONTENTS vi

2.3.7 Zero temperature spectral functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.4 Numerical Equilibrium Linear Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.4.1 Correlation functions in the microcanonical ensemble . . . . . . . . . . . . . . . . . 43

2.4.2 Novel off-diagonal method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.4.3 Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3 Pure state thermodynamics 49

3.1 Thermalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1.1 Time-averaged ensemble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.1.2 Equilibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.1.3 Independence from initial state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.1.4 Thermalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.1.5 Lack of thermalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2 Computational ensembles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2.1 Zero temperature methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.2 Canonical ensemble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.3 Time evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2.4 Microcanonical ensemble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 Motivation 66

II Results 68

5 Transport in strongly driven homogeneous quantum systems 69

5.1 Currents and other observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.1.1 Derivation of the energy current for inhomogeneous systems . . . . . . . . . . . . . 70

5.1.2 Continuity equation with driving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.1.3 Short-time behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 Drude weight after a quench . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3 Generalized Linear Response in a driven quantum system . . . . . . . . . . . . . . . . . . . 77

5.4 Current ratios in generic systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.5 Strong–field Bloch oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.6 Driven integrable doped Mott insulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.7 Integrable metals close to half-filling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6 Reduced dynamics and entropy density in strongly driven systems 88

6.1 Reduced Density Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.1.1 Entropy density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.1.2 Summation algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.2 High Temperature Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2.1 HTE for the energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.2.2 Canonical entropy of the RDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.3 Quasi equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.4 Canonicality of subsystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.5 Temperature from the eigenvalue distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.6 Random Matrix Theory analysis of the RDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103



CONTENTS vii

7 Thermoelectrical phenomena beyond linear response 106

7.1 Thermocouple setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.2 Weak field and LR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.2.1 Local Equilibrium regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.2.2 HTE for the particle number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.3 Long time operation of the TEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.4 Strong field Bloch oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.5 Dynamical reversal of the Peltier response in strong fields . . . . . . . . . . . . . . . . . . . 115

7.5.1 Finite-size scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8 Results 118

A List of Own Publications 122

Bibliography 123



Part I

Introduction

1



Chapter 1

Introduction

The system we are going to study is introduced through its Hamiltonian and Hilbert space. The basic

theoretical frameworks needed to state the scientific problems and the results are presented, following the

bibliography. The consequences of integrability for a quantum system are explained. The introduction to

thermoelectrical effects and linear response motivates novel results in later chapters.

The problem of a one–dimensional quantum system driven arbitrarily by an external field requires

an approach based on the real–time evolution of the system from its initial state. We study a ring of

strongly interacting fermions, dependent on the external magnetic field piercing the ring, generating a

flow of current by induction, which drives the system towards higher energies. The contact with external

thermostats is thus avoided and only the system state needs to be specified.

The system is closed, meaning that it exchanges no information (heat or particles) with the environ-

ment. Since there is no flow of information, the evolution of a closed system is unitary, so pure states

remain pure at arbitrary times. The evolution of the systems follows the Schrödinger equation, and does

not necessitate the description in terms of a density matrix following the von Neumann equation.

We prepare the ring in an initial high–temperature state |ψ(0)〉, corresponding to a finite average

energy Ē much higher than its ground state. As counterintuitive as it may sound, high–temperature

states are as easily computed as the ground state, but are less sensitive to the microscopical details of the

system, allowing us to establish a contact with the laws of thermodynamics in the quantum regime. Even

if the system is prepared in low–energy configuration, driving it with an arbitrary protocol involves all

states of the spectrum, so the classical renormalization-group picture of the relevant degrees of freedom

does not apply, as the system will be driven towards high energies.

The strength of this approach comes from representing the quantum state of the closed system

at all times as a pure wavefunction (or an average over a small number <10 of vectors), which can

be propagated forward in time with minimal effort, using the Time–Dependent Schrödinger Equation

(TDSE). The approach is depicted in Fig. 1.1, and is the following:

1. Prepare the initial state in a narrow window of energy corresponding to the set temperature

|ψ(0)〉= |ψE〉, (1.1)

using the computational ensembles of Section 3.2.

2. Evolve the system solving the Schrödinger equation to numerical precision, with the Hamiltonian

H[φ(t)] depending on time through the external magnetic field φ(t)

i
d
dt
|ψ(t)〉= H[φ(t)] |ψ(t)〉, (1.2)

2
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Figure 1.1: The state of the system is represented by a pure wavefunction, evolved in time according to the

time-depending Schrödinger equation. Observables, such as the energy and particle currents are measured as

expectation values on |ψ(t)〉.

using the methods of Section 2.2 and 3.2.3.

3. Compute any observable Â[φ(t)] at time t in the time-evolved state




Â
�

(t) =



ψ(t)
�

� Â[φ(t)]
�

� ψ(t)
�

(1.3)

4. Obtain exact dynamics of any small subsystem by projecting its reduced density matrix ρS(t) from

the wavefunction of the whole ring. Thermodynamical quantities such as the entropy density can

be extracted from the knowledge of ρS(t), as shown in Chapter 6.

The evolution for a time δt generates a map in Hilbert space, represented by the unitary operator

Û(t) = e−iH(t)δt . Under the evolution with a time-independent Hamiltonian, the energy eigenstates are

stationary states. The evolution can be thus characterized by analyzing the projections of the initial

state on the energy eigenbasis, reducing the problem to the study of the equilibrium states. Driven

systems, on the other hand, at every instant generate different maps Û(t) between the Hilbert spaces at

t and t +δt. They can not be reasoned about in a fixed basis and require the machinery of explicit time

evolution.

The advantages of highly energetic states can be visualized in Fig. 1.2: driving a gapped system

with a slow variation of the phase φ from the ground-state manifold (the states visible at the bottom)

only generates transitions between the two lowest-lying states. Starting from a “hot” state where the

energy density is finite, i.e. there is almost a continuum of states, the transitions can be smooth and the

behavior of the system close to the thermodynamic limit where the single energy levels are not resolved.

Changing the phase of the system from φ = 0 to finite values changes the symmetries (see Section

1.1.1.1), and drives the system through a series of avoided and allowed crossings of the energy levels.

Thus symmetries of the stationary system can be softly broken by driving, as seen in the appearance

of currents that are time–reversal antisymmetric, and in Chapter 6 with the thermalization of driven

integrable systems.

1.1 Spinless fermion model

The model that will be studied throughout this dissertation, is the t − V −W spinless fermion

model with a complex phase, the (extended) fermionic equivalent of the celebrated Heisenberg model.
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Figure 1.2: Energy levels of a very small t − V Hamiltonian H(φ), at half-filling in an insulating phase (V = 3),

depending on the phase φ. The ground-state is marked by a blue arrow (lower one), a generic high-temperature

state by a red arrow (upper one). The evolution of every eigenvalue along the change in the field was continuously

tracked, identifying every state with a color, with a minor number of errors.

It is a model of coupled spin 1/2 particles, which in spite of its extreme simplicity, is a source of

mathematical and physical insights through the interplay of its interactions. It provides an excellent

description of the so-called spin-chain materials [SGO+00,SGO+01,TMEU96]: the transport properties

of the Heisenberg model have been probed in depth in order to explain the anomalously large heat

conductivity in SrCuO2, Sr2CuO3, KCuF3, CuGeO3 spin chains. The root of the effect is considered to

be the integrability of the model, which allows for the ballistic flow of energy through the system

[HMHCB03,AG02,JHR06,KF13,KM01,Pro11,NMA98,OCC03,JR07].
The thermodynamical properties of the t−V−W model mirror exactly those of the Heisenberg model,

with a 1-to-1 correspondence of the spectrum and eigenstates. The mapping of states and operators can

be explicitly performed and it is called the Jordan-Wigner transformation in the literature. Differences

arise at the level of plain 2-point correlation functions, since fermionic operators such as



c†
i ci+m

�

acquire a sign depending on the number of fermions between the sites i and i+m, corresponding to the

expectation value of a string of spin operators such as



S+i Sz
i+1 . . . Sz

i+m−1S−i+m

�

.

The t − V −W Hamiltonian can be rewritten as the sum over all sites of the lattice of

Ht−V−W(φ) =
L
∑

l=1

Hl(φ), (1.4)

where the local Hamiltonian Hl(φ) is the sum of 3 competing interactions

1. Hkin
l (φ) = −th eiφ c†

l+1cl − th e−iφ c†
l cl+1, the kinetic energy terms which represents the action of

hopping between first neighbors, with the additional phase acquired in presence of a magnetic

field in the ring

2. HV
l = V

�

nl −
1
2

� �

nl+1 −
1
2

�

, potential energy term giving repulsion (resp. attraction) between

nearest neighbors with the same (resp. inverse) occupation
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3. HW
l =W

�

nl −
1
2

� �

nl+2 −
1
2

�

, potential energy due to the repulsion between second neighbors

V

Wteiϕ te-iϕ

Figure 1.3: Schematic representation of the interactions of the t − V −W Hamiltonian: fermions can hop to

non-occupied neighboring sites, while experiencing repulsion between fermions on nearest (with strength V ) and

second (with strength W ) occupied neighbors

To consider a closed ring of fermions, periodic boundary conditions equivalent to a one-dimensional

torus are imposed. However, when φ > 0, fermions acquire a phase while traversing the boundary. This

periodic setup with finite constant phase is also called twisted boundary conditions [MR98,JŽ11a,SW04,

LG03,SWZ93].
The phase φ in the kinetic energy is known as Peierls’ gauge phase [HFG+05, GBM08, Gla66]. It

represents a finite magnetic flux piercing the ring surface, which modifies the matrix elements between

nearby orbitals, as simply captured by the minimal substitution of the hopping parameter in the tight-

binding approximation. For special values, integer multiples of φ0 = 2π/L, the phase can be eliminated

by suitable unitary transformations. The introduction of time dependence through the phase is the only

way to correctly introduce an effective electric field in the ring topology of the system without breaking

translational symmetry. A varying phase φ(t) induces time-dependent changes in the Hamiltonian

H[φ(t)], in turn driving the system in real time.

A different notation t − V − V ′ [MCR11] is also employed in the literature, with V ′ = W . More

substantial variations of the model are known as well:

• t − t ′ − V model with hopping on second neighbors with strength t ′ [Sha09].

• Staggered magnetization term B
∑

l(−1)l nl [KIM13,OCC03,SGB15]

The reason of the introduction of second neighbor couplings is to avoid integrability, which causes

anomalous transport properties and the possible failure of methods based on quantum typicality (see

Section 3.1.5). The staggered magnetization serves a similar purpose, while remaining strictly local so

easier to treat both analytically and numerically.

1.1.1 Hilbert space and symmetries

The use of symmetries is fundamental in numerical quantum mechanics to constrain the dimension

of the Hilbert space, decomposing it into smaller subspaces not connected by matrix elements of the

Hamiltonian. In the basis in which the symmetry operators are diagonal, the Hamiltonian is reduced

into block-diagonal form. Four basic symmetries of the Hamiltonian will be explored, all but the first

requiring spatial homogeneity of the system:

1. Particle number conservation, which is valid regardless of boundary conditions and additional

local interactions

2. Particle-Hole transformation

3. Translational symmetry
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4. Inversion parity

The exposition is meant to give a quick reference, more details regarding the equivalent Heisenberg

model can be obtained in Ref. [San10], but necessitating reworking due to the absent fermionic signs.

We impose Periodic Boundary Conditions (PBC)1, equivalent to considering a ring of L sites, with

the symmetry enforced at the level of operators cL+1 = c1. Every site j has a local Hilbert space H j

isometric to C2, so the total space is

H = ⊗L
j=1H j (1.5)

dim(H ) = dim(H j)
L = 2L . (1.6)

The Hamiltonian conserves the total number of fermions N , which is the eigenvalue of the diagonal

operator N̂ =
∑

j n̂ j . Every state in H can be assigned a number of fermions, and a basis with

a predetermined average occupation number N/L can be formed by choosing states |i〉 such that



i
�

� N̂
�

� i
�

= N . The dimension of a spinless fermion system, due to the Pauli exclusion principle, is the

number of combinations of N indistinguishable hard-core particles on L positions:

dim(H L
N ) =

�

L
N

�

. (1.7)

By the binomial theorem, the total Hilbert space decomposes into the N particle subspaces exactly

dim(H ) = dim(H L
0) + dim(H L

1) + . . .+ dim(H L
L/2) + . . .+ dim(H L

L) =
L
∑

m=0

�

L
m

�

= 2L . (1.8)

A chemical potential can be added, but since it is a diagonal term constant in the N particle subspace, it

can be seamlessly reabsorbed into the definition of the Hamiltonian

H +µN̂ −→ H. (1.9)

Each basis state with N fermions out of L can be represented by an ordered string of L binary

numbers where the ones correspond to the presence of a fermion creation operator on the zero-particle

vacuum |0〉, for example

c†
1c†

5|0〉= |10001 . . .〉 and c†
5c†

1|0〉= −|10001 . . .〉. (1.10)

The diagonal operators can be implemented by simple bit counting on each basis state, e.g. the first

neighbors counting operator is the number of ones after a circular bitshift and a AND operation:

state of the system 11001

circular bithift 11100

bitwise AND 11000

count of ones 2

The hopping operators need to set a bitmask with a 1 corresponding to the initial and a 0 in final hopping

site, checking that the former is filled and the latter empty, by AND bitwise comparisons. The occupation

can be then reversed by a XOR operator with the two-bit mask. The fermionic parity is determined by

calculating the sum of 1 bits between the two sites.

1Due to the better converge to the thermodynamic limit
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1.1.1.1 Particle-Hole symmetry

The Particle-Hole (PH) transformation maps fermions to holes, and vice versa. To be a symmetry of

the Hamiltonian, the following criteria must be satisfied:

• Zero external field φ = 0. Allowing a more complicated transformation, φ = 2kπ/L with k ∈ Z.

• The chemical potential for N = L/2 particles is zero.

In that case, any energy eigenstate with N particles corresponds to an eigenstate with L − N particles

with the same energy.

The PH transformation corresponds to

cl
PH
−→ (−1)l c†

l , c†
l

PH
−→ (−1)l cl φ

PH
−→−φ, (1.11)

where the flip of the magnetic flux explains why it is not a symmetry of the Hamiltonian in a arbitrarily

set external field. The PH operator P̂ is realized (see [HFG+05]) by the set of local transformations

Pi = (c
†
i + ci), ordered 2 into

P̂ = PL PL−1 . . . P2P1. (1.12)

Let us give a concrete example on a 5-sites system:

P̂|01001〉= −|10110〉. (1.13)

The kinetic energy is transformed into itself

c†
l+1cl + c†

l cl+1
PH
−→−cl+1c†

l − cl c
†
l+1 = c†

l cl+1 + c†
l+1cl , (1.14)

whereas a typical nearest neighbor3 interaction term is mapped to

nl nl+1
PH
−→ (−1)2l(−1)2(l+1)(1− nl)(1− nl+1) = (1− nl)(1− nl+1). (1.15)

The interaction counts the number of pairs of consecutive occupied sites, which is zero for the empty

lattice, and L for the maximum filling. The form used in Eq. (1.4) has been chosen to be PH symmetric

hV,l =
�

nl −
1
2

��

nl+1 −
1
2

�

PH
−→

�

1
2
− nl

��

1
2
− nl+1

�

= hV,l . (1.16)

The case for the W interaction term is analogous. In order to obtain a PH symmetric Hamiltonian is

thus sufficient to replace any diagonal term nl by ñl = nl −
1
2 , a convention used in the remainder of

this manuscript. The shift in the number operators

V
∑

l

ñl ñl+1 = V
∑

l

nl nl+1 − V
∑

l

nl + V
1
4

∑

l

1= V
∑

l

nl nl+1 + V
�

L
4
− N

�

︸ ︷︷ ︸

µ(N)

(1.17)

adds a constant term depending on N and thus corresponds to a shift of the chemical potential.

The half-filled case is the largest subspace with N = L/2, which is symmetric with respect to the PH

transformation if the lattice has an even number of sites. The subspace can be further decomposed into

even and odd subspaces with the projectors P̂± =
1±P̂

2 if degeneracy must be avoided. It is very useful in

practice to break the PH symmetry by applying a small finite phase (of the order of φ = 10−4 is enough

in practice), in order to avoid degeneration of the spectrum. Moreover, the dynamical breaking due to

the time variation of φ is at the root of the induction of currents.
2The order is essential to avoid ambiguities with the fermion signs
3Longer ranged interactions transform in the same way
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1.1.1.2 Translational symmetry

The Hamiltonian is constructed as the sum of L shifted identical terms, and thus symmetric by

construction. The translation operator is built using a set of swap operators

S j,l = 1− (c†
j − c†

l )(c j − cl). (1.18)

The operator performing a shift, i.e. the translation by 1 site to the right can be written as

T̂ = S1,2S2,3 . . . SL−1,L . (1.19)

The operator formulation is useful to prove identities, however it is best to give a representation on

the computation binary basis. The translation operator acts as a signed permutation on the fermionic

creation operators

T̂ c†
i1

c†
i2

. . . |0〉= sign(σ) c†
σi1

c†
σi2

. . . |0〉. (1.20)

The set of indexes corresponding to filled sites is collected and successively permuted into a different

position4

i −→ σi = [(i − 1+ K) mod L] + 1 for translations by K sites. (1.21)

The sign of the transformation corresponding to

σ =

�

i1 i2 . . .

σ1 σ2 . . .

�

(1.22)

is the canonical parity of the permutation. The empty sites cannot be included as to form a full

permutation, but compiling the ordered N-vector σ = (σ1, . . .), the parity is given by the following

formula:

Pσ =
L
∑

i=1, j=i+1

(σi > σ j)

sign(σ) = (−1)Pσ , (1.23)

where the true or false values in the inequality correspond to arithmetic ones and zeros.

1.1.1.3 Momentum states

Using the transformation given above, each N-particle subspace can be decomposed into equivalence

classes, where the different vectors are equivalent up to translations with momentum q. In each class, a

representative vector is chosen, corresponding to the lowest ranking basis vector of the set, e.g.

class[|0,1, 1,0, 0〉] = [|0, 1,1, 0,0〉, |0,0, 1,1, 0〉, |0,0, 0,1, 1〉, |1, 0,0, 0,1〉, |1,1, 0,0, 0〉], (1.24)

where the representative has been underlined. The momentum states

|a(q)〉= |a〉+ eiq T̂ |a〉+ . . .+ eiq(L−1) T̂ L−1|a〉 ∀|a〉 (1.25)

form an orthogonal basis of the subspace with momentum q, constructed on a set of representative

vectors |a〉. The normalization N(a, q) has to be carefully determined numerically, as the appearance

4Using the convention that the sites are numbered from 1
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of the fermionic signs in the translation operators renders the formulas provided in the literature for

the momentum states of spin Hamiltonians unusable. Every basis vector |i〉 can be projected back to its

representative by m translations

|a〉= T̂−m|i〉, (1.26)

from which the momentum state |a(q)〉 can be identified. States with different momentum are orthogonal

by construction with 〈 b(q′) | a(q)〉= 0 unless q = q′.

The momentum subspacesH L
N ,q, with q =

�

2π
L q′, q′ = 0, . . . , L − 1

	

, have approximately the same

dimension, reducing the Hamiltonian into L separate blocks. H L
N ,q has thus approximate dimension

dim(H L
N ,q)≈

�

L
N

�

/L. (1.27)

Only the representative states of each class need to be written down, if the momentum state has a

nonzero norm N(a, q)> 05. The matrix elements of the Hamiltonian inH N ,q between two momentum

states 〈b(q) |H | a(q)〉 can be given in terms of the matrix element between the representatives. Acting

with the Hamiltonian on |a〉 gives in general another state |b̃〉 = H|a〉, which does need not to be

the representative of its class. It is however true that |b〉 = T̂−n|b̃〉 for some n, giving a phase factor

φ =



b(q) | b̃
�

. The matrix element is

〈b(q) |H | a(q)〉= φ
√

√N(b, q)
N(a, q)




b̃ |H | a
�

. (1.28)

The momentum-basis Hamiltonian has an L times smaller dimension, but it is more dense and unavoid-

ably complex. The use of the momentum basis allows the simulation of bigger systems, about 4 or 5

sites more, but complicates matters if the reduced density matrix of a subsystem is required, so it has

been avoided in the course of this thesis. Another additional caveat is that if Chebyshev expansions

are employed (see Section 3.2.2), different momentum subspaces have different spectral bounds. It

is necessary to select the largest bounds in order to sample the density of states uniformly across all

momentum subspaces.

1.1.1.4 Inversion parity

The inversion transformation Ẑ is a parity operator (Ẑ2 = 1) that maps opposing sites of the system

into each other. It is a symmetry of the Hamiltonian even if open boundary conditions are used. Applying

Ẑ yields

cl
Z
−→ cL−l+1. (1.29)

The inversion commutes with PH, but does not in general commute with the translation operator. In

fact, applying it to a momentum state yields

Ẑ |a(q)〉= |a(−q)〉, (1.30)

which is a symmetry only in the q = 0 and q = π/L sectors. The symmetry is useful for studies of the

spectrum, since it allows the remaining degeneracy to be lifted after PH is broken by a finite field φ > 0.

5The states for which the norm is zero are dubbed incompatible states. The destructive interference of the phase shifts together

with the translations may result in zero norm for some of the momentum values. No state is incompatible in all momentum

subspaces.



CHAPTER 1. INTRODUCTION 10

1.1.2 Equivalent Heisenberg model

The t − V −W model was chosen due to its simplicity and the ample information available, with

many questions still unanswered, such as the nature of all of its conserved quantities and their effect on

the Ballistic transport. However, the literature is available regarding the spin version almost exclusively,

so a conversion is needed.

The extended XXZ model is a Heisenberg-type system with additional interactions across second

nearest neighbors:

H = J
∑

l

�

S x
l S x

l+1 + S y
l S y

l+1 +∆1Sz
l Sz

l+1 +∆2Sz
l Sz

l+2

�

. (1.31)

The spin operators commute between different sites [S x ,y,z
i , S x ,y,z

j ] = 0 if i 6= j. This is different from

fermions, which anticommute over disjoint sites {c†
i , c j}= 0 if i 6= j.

The local representation of the operators S± = S x±iS y

2 is identical to those of c† and c respectively,

however the global commutation properties differ. Introducing the Jordan-Wigner transformation, the

spin operators are supplanted with nonlocal strings in order to correct the global commutation relations:

S+l = (−1)
∑k−1

i=1 ni c+l

S−l = cl(−1)
∑k−1

i=1 ni

Sz
l = nl −

1
2

Using the transformation above, the extended XXZ Hamiltonian can be rewritten as

H =
J
2

∑

l

(c+l+1cl + h.c.) + J∆1

∑

l

�

nl −
1
2

��

nl+1 −
1
2

�

+ J∆2

∑

l

�

nl −
1
2

��

nl+2 −
1
2

�

. (1.32)

This allows the identification

th =
J
2

V = 2th∆1 W = 2th∆2. (1.33)

Since we have conventionally chosen th = 1 in the forthcoming chapters, this is equivalent to setting

V = 2∆1 and W = 2∆2.

The half-filling condition N = L/2 corresponds to the subspace with Sz = 0, or an equal number of

spins up and down. Finite doping of the system maps to the choice of a subspace of average nonzero

magnetization.

1.1.3 Phase diagram

The half-filled Heisenberg XXZ model at T = 0, without any additional interactions, is gapless for

|∆1| < 1, and magnetically ordered otherwise. For ∆1 > 1 the model displays an antiferromagnetic

phase, whereas for ∆1 < −1 it is ferromagnetic.

This corresponds to an insulating CDW (Charge-Density wave) phase in the fermionic language for

V > 2 (the case of negative V is not investigated here), and a Luttinger liquid (metallic) phase for V < 2,

with a quantum phase transition in between.

More is known about the phase diagram when the additional W interaction is switched on at

zero temperature [MCR11]: for the small values of W < V/2 chosen in our work, we remain in the

thermodynamical phase set by the value of V .



CHAPTER 1. INTRODUCTION 11

Working with a slight doping of the system, the additional charges available always lead to the

formation of a metallic, conductive phase, with a visible peak in the conductivity σ(ω) for ω = 0,

as seen in Fig. 1.7 on page 21. On the other hand, at half-filling, an ideal insulating or ideal metal

behavior can be found whenever the system is integrable, for W = 0 [MBP11]. The typical criteria for

the metal–insulator classification apply to T = 0 only [SWZ93], whereas for the ideal integrable case,

the criteria hold at all temperatures T ≤∞. The dc conductivity of a conductor, i.e. the low frequency

component, is characterized by a broadened delta peak, with dissipation rate Γ ≥ 0

σ(ω) =
2iDN

ω+ iΓ
for ω→ 0. (1.34)

When DN > 0, the system is metallic. At T = 0 for clean metals without disorder, the dissipation rate

Γ = 0 and the conduction is delta-valued. At higher temperatures, the conductivity is usually broadened,

unless the system is integrable. In the latter case, DN > 0, Γ = 0 ∀T > 0. Integrable (ideal) insulators

have σ(0)→ 0 ∀T > 0, while presenting a nonzero conductivity peak at ω=∆gap > 0.

In Chapter 5, we deal with a doped insulator and metal, with V = 3 and V = 1.5 respectively, both

below half-filling. The type of the phase in both cases is metallic, with a dc conductivity peak, although

the doped insulator is a case of bad metal [ZBF14,ZF12], with the largest conduction component for

ω> 0.

1.1.4 Current operators

The natural observables concerning the transport in a system are currents. Currents are Hermitian

imaginary (i.e. there exists a basis on which their representative matrix is antisymmetric with imaginary

entries) operators. We give their definition below, referring the full derivation to Section 5.1. The

operators depend on the Peierls’ phase nontrivially.

The particle current operator JN
i counts the flux of particles moving from the site i − 1 onto i,

JN
i (φ) = i th exp(iφ) c†

i+1ci − i th exp(−iφ) c†
i ci+1. (1.35)

The energy current operator J E
i measures the energy inflowing on the site i from the neighbors

J E
i (φ) = −

t2
h

L

�

i e2iφ c†
i+1ci−1 +H. c.

�

︸ ︷︷ ︸

J E1
i

+
JN

i

2L
[3W (ñi+3 + ñi−2) + (2V −W )(ñi+2 + ñi−1)]

︸ ︷︷ ︸

J E2
i

. (1.36)

Under the PH symmetry, JN
i is odd, as

JN
i = i th eiφ c†

i+1ci +H. c.
PH
−−→−i th e−iφ ci+1c†

i +H.c.= i th e−iφ c†
i ci+1 +H.c.= −JN

i . (1.37)

The first sign changes due to the factors (−1)i(−1)i+1, which must equal −1 for all i. Conversely, J E
i

is even, as it can be seen by analyzing the components J E1
i and J E2

i separately. The first component, a

two-site hopping term always acquires a positive sign, so J E1
i

PH
−−→ J E1

i . The second term also changes

sign twice, since for all k

JN
i ñi+k

PH
−−→ (−JN

i )(− ñi+k) = JN
i ñi+k . (1.38)

Thus, J E
i is even under the PH transformation.
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1.2 Integrability and Random Matrix Theory

Integrable systems comprise a remarkable class of models. The most widely known examples are the

classical separable systems, characterized by periodic orbits and lack of correlations in the eigenvalues.

In quantum integrable systems, the role of separability is born by solvability, the existence of an infinite

set of local conserved operators, which can be used to block-diagonalize the Hamiltonian, leading the

statistical independence of the separate spectrum sectors.

The Heisenberg model (equivalent to the model studied here) was the first quantum integrable

system to be solved analytically by Bethe Ansatz in 1931. Such a solution guarantees the existence of an

infinite set of local conserved operators, which can be mapped to the Hamiltonian through a continuous

flow of a parameter λ 6 [YS13,Sha86,CM11]. For integrable systems, a transfer matrix operator T̂ (λ)
of the corresponding classical spin model is the generator of all local conservation laws, starting with

the Hamiltonian

H = −
d

dλ
log T̂ (λ)|λ=0, (1.39)

and all other local operators Q̂n by the expansion

log
�

T̂ (λ) T̂ (0)−1
�

=
∞
∑

n=1

λn

n!
Q̂n+1. (1.40)

The use of the transfer matrix is the basis of most of the modern methods based on the Algebraic Bethe

Ansatz [ND03,Deg04,MR98,PPSA14,ECJ12,CE13,NMA98,Sta93,Poz13,Pro15].
Since there is no algorithm capable of conclusively deciding whether a given quantum system is

solvable, the eigenvalue statistics has become an empirical indicator of integrability [PZB+93,PŽ13].
Random Matrix Theory (RMT) provides a parameter-free criterion, applicable to the Hamiltonian or to

other operators representing the system, such as the (reduced) density matrix. RMT threads successfully

apparently disconnected areas of physics [Bee15,Mir00,BFF+81], from the spectra of atomic nuclei,

to quantum chromodynamics and classical chaotic systems. It provides a characterization of universal

classes of behaviors, abstracting the correlations in the eigenvalues of the matrix describing the problem,

into terms of probabilistic ensembles of random Hermitian matrices. The statistically independent

character of the constituent blocks of integrable systems is reflected by the Poissonian statistics of their

spectrum.

Chaotic systems, on the other hand, have intrinsically nonseparable dynamics at the classical level,

with given boundary conditions. In the quantum case, the so called quantum chaos conjecture connects

the inextricable correlations to the spectrum to chaotic behavior, causing strong time decay of initial

correlations and an evolution towards an equilibrium state weakly dependent on the initial state. Generic

integrable systems with two or more degrees of freedom have energy levels that tend to cluster and are

not forbidden from crossing when a parameter in the Hamiltonian is varied. The typical distribution

of the spacings of neighboring levels is exponential, P(S) = e−s, as if the energies were uncorrelated

points in a Poissonian time series. On the other hand, chaotic nonintegrable systems display correlations

in their spectra, which strongly resist crossing, with a varying level of repulsion depending on the

universality class the Hamiltonian only: P(S)∼ Sβ for S→ 0, with β = {1,2, 4}.
The strength of the repulsion β does not depend on the microscopic details of the Hamiltonian, but

on the type of time invariance, which uniquely determines the ensemble of random matrices sharing the

same spectral characteristics. Time reversal is always a symmetry for real-valued spinless Hamiltonians,

6The spectral parameter λ depends here on the interaction strength ∆ only
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with the possible addition of a homogeneous electromagnetic field. Time reversal symmetric operators

always have many real representations, since both the symmetry and the reality are preserved by the

whole orthogonal group SO(n), and their properties are thus connected to real Gaussian Orthogonal

Ensemble (GOE) with β = 1.

Hamiltonians for which a (generalized) time-reversal symmetry is absent correspond essentially to

complex matrices. The only real representation is the eigenbasis, but it is not preserved by the most

general group of transformations allowed by symmetry, the unitary group U(n). Their universality class

for integer-spin particles it is the Gaussian Unitary Ensemble (GUE) with β = 2. We mention for sake of

completeness, that for half-integer spins with time reversal symmetry, the Gaussian Symplectic Ensemble

(GSE) and β = 4 is respectively found.

The strength of the repulsion can be understood as the unlikelihood of two energy levels being

the same: a 2 × 2 representative of the ensembles needs up to β + 1 random real parameters to

delicately match for a crossing to happen. The factor of sβ intuitively stems from the Jacobian of the

parametrization, to spherical coordinates in that many dimensions, of the probability density.

The exact distribution probability for eigenvalues taken from one of the canonical matrix ensembles

is hard to derive. The distribution of level spacings, the differences between adjacent energy levels

s = En+1− En, is fortunately captured by Wigner’s surmise, a formula valid for 2×2 matrices, which gives

an asymptotically valid ansatz for all sizes. It is the generalized Wigner-Dyson distribution [GMW98]

P(s) = aβ sβe−bβ s2
, (1.41)

with the constants aβ and bβ defined uniquely (and continuously) by β . In the particular cases mentioned

earlier, the distribution equals

P(s) =























π

2
s e−

π
4 s2

GOE β = 1

32
π2

s2 e−
4
π s2

GUE β = 2

262144
729π3

s4 e−
64
9π s2

GSE β = 4

(1.42)

The case of integrable systems lacking level repulsion is captured by the Poissonian distribution, which

favors a finite density of crossings:

P(s) = e−s Integrable. (1.43)

1.2.1 Unfolding

RMT predictions accurately describe universal classes of matrices. How can it be possibly apply

to a concrete Hamiltonian? If a generic quantum system carried no more information than a random

Gaussian matrix, no space would be left for the intricacies of geometry, interactions and interplays of

different particles.

As it turns out, RMT can be successfully applied to the deviations of the energy levels from their

average distribution. The information in the spectrum is split into two: the fine, microscopic level

structure has a universal random distribution captured by RMT, while the remaining smooth density of

states is the one responsible for the thermodynamical behavior of the system (see Section 2.3.4).

Given a sequence of measured eigenvalues {E1, E2, . . . , Ei}, obtained through Fourier analysis of

a real-time experiment, or by exact diagonalization of a matrix, it is necessary to subtract the slowly

varying continuous density ρ(E) to extract the fluctuating part ηi

ηi = Ei −ρ(E). (1.44)
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Figure 1.4: Unfolding procedure illustrated for the spectrum of a t−V −W Hamiltonian, with L = 18, N = 10, V =

1.5, W = 0.0, zero external magnetic field, in the momentum subspace q = 0. The system is integrable, although

that plays no role here, with about 2400 energy levels in the symmetry subsector. (a) The integrated number of

states as a function of the energy. Superimposed are both the smooth density ρ(E) as well as the discontinuous

N(E). The square points out to the area of the spectrum which is zoomed in the next panel. (b) Detail of an area

of the spectrum with 50 levels. The smooth and total density are plotted. The unfolding procedure assigns the

value ρ(Ei) (horizontal dotted line) to each energy level indexed Ei (vertical dotted line). (c) The same area of the

spectrum is showed after the unfolding. The sequence x i is plotted as a function of i (solid line), with the dotted

line providing the ideal uniform distribution as a guide to the eye.

The set of {ηi} needs to be normalized to be dimensionless. The overall procedure is called unfolding,

and produces a set of values {x1 ≤ x2 ≤ . . .≤ x i} with unit mean spacing and a distribution prescribed

by one of the ensembles of RMT.

Unfolding can be performed at once, with a process shown in Fig. (1.4), starting with the total

integrated number of states (panel a), as a function of the energy

N(E) =
∑

i

θ (E − Ei) =
∑

i

∫ E

δ(e− Ei) de. (1.45)

Calculating the points corresponding to Ei using the smooth integrated number of states N̄(E), as a

function of the index i, straightens the values into a sequence with unit average density. This is shown

for a single point in Fig. 1.4(b), where to the level i = 330 is assigned x330 = 334.09. This is the converse

to the use of the inverse cumulative distribution function (CDF) in probability theory, to map uniformly

distributed random numbers from the unit interval [0, 1] into the distribution given by ρ. Here we map

numbers distributed according to ρ(E) onto a more uniform sequence.

Precisely, the map is given by

[Ei , N(Ei)] 7→ [i, x i = N̄(Ei)], (1.46)

obtaining the ordered set {x i} with a uniform distribution, which preserves all the fluctuations on closer

inspection [see Fig. 1.4(c)].

1.2.2 Details and examples

Let us describe in more detail the procedure, with concrete examples. For lattice Hamiltonians, the

spectrum has typically finite density at the middle, with only a countable number of states at the edges.
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Figure 1.5: Spacing statistics, with energy levels taken from a t−V −W Hamiltonian, with L = 20, N = 12, V = 1.5,

zero external magnetic field, in the momentum subspace q = 0. Of the original 6300 levels, 15% has been discarded

at either end of the spectrum. The spacing distribution (solid blue line) is plotted against the level distributions of

equations (1.42) and (1.43). (a) The integrable system with W = 0. (b) The generic system with W = 1.0.

N(E) has then a sigmoid shape when plotted as in Fig. 1.4(a) , which needs to be smoothed to obtain

N̄(E). Since the density of the spectrum needs to be nonzero, the lowest and highest lying states need

to be removed. The ends of the spectrum always satisfy entanglement area-laws [ECP10], meaning the

number of states is countable even in the thermodynamical limit, and ρ(E) is zero in measure and

discontinuous.

Many recipes are available, but it is possible to simply convolve the sequence of energies {Ei} with a

window function of approximate Gaussian shape and width over 50-100 levels. The integrated density

over the convolved spectrum gives an equivalently smooth ρ(E), with reduced effort.

1. Take the sequence of levels {Ei}

2. Convolve it with a window function to obtain the smoothened sequence {Si}

3. Calculate a spline interpolant to the points (Si , i), which are the (x , y) coordinates of the smooth

integrated density N̄

4. Use the interpolant to calculate the values of N̄ at the points Ei

Once the unfolding is completed, calculating simple quantities, such as the spacing distribution

is trivial. Already for a small system such as the one in Fig. 1.5 the agreement with the predicted

distribution is remarkable. A set of sorted random Gaussian numbers in place of the eigenvalues would

have produced just as accurate an example of a noninteracting spectrum as the system in panel (a).

The greatest hurdle to the widespread application of RMT analysis is the requirement for the spectrum

to come from an irreducible matrix, where all unnecessary degeneracies have been removed. The system

parameters in the figure have been chosen to minimize the number of kinematic symmetries present:

only translational symmetry and time-reversal invariance are left. Choosing a number of particles N

greater than half of the number of sites L/2 breaks the particle-hole (PH) symmetry, so the parity

under PH is not a conserved quantum number. Adding an external static magnetic field, threading

the one-dimensional ring of fermions, would not have broken time reversal symmetry, just changed

the corresponding generator of the symmetry. Finally, the momentum sector q = 0 has been chosen

arbitrarily to remove all degeneracy.
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The effect of turning on an additional interaction such as W is clearly seen. The statistics transition

from those of a noninteracting system, to the chaotic GOE ensemble, confirming that the additional

repulsive interaction between second neighbors breaks integrability. It is possible to observe a mix of

distributions and the transition between the two as a parameter is varied in finite-size systems [RNM04],
although in the thermodynamical limit only one remains.

Had we not reduced the matrix, the independent levels from the different sectors would not display

any repulsion. Many levels would overlap due to degeneracies, and the spacing distribution would

always resemble a Poissonian, with an additional s = 0 component.

1.3 Equilibrium linear response

Linear Response (LR) describes the result of applying an external perturbation to an equilibrium

system. It is the framework used to define physical susceptibilities at the classical level. A typical example

is the application of a frequency dependent electrical field, inducing a current in the system that defines

a response called optical conductivity σN (ω).
In the classical LR formalism, a system with the unperturbed Hamiltonian H0 is considered at

equilibrium at t0 (we will take t0 = 0), then adiabatically perturbed by a time-dependent source

operator P(t)7 added to the total Hamiltonian

H(t) = H0 + P(t). (1.47)

The exact expectation value of an observable 〈O(t) 〉H(t) evolved in time from t0 with the full H(t) may

be impervious to computation, however the resulting variation δ 〈O(t) 〉 in first-order of P(t) can be

written using Kubo’s formalism as an equilibrium expectation value of a more complicated operator.

As a notational remark, we switch to the quantum mechanical language for the description of LR.

The natural setting of the perturbative formalism is the Interaction Picture (IP), where the unperturbed

Hamiltonian H0 is used to evolve a constant operator OI (t) according to the Heisenberg equations

OI (t) = eiH0 t O e−iH0 t , (1.48)

and the operator PI (t) generates the additional evolution on the states, with the operator

U(t, t0) = T exp

�

−i

∫ t

t0

P(t ′) d t ′
�

≈ 1− i

∫ t

t0

PI (t
′) d t ′. (1.49)

The evolution of the state ρI (t) in the interaction picture is given by (1.49) alone

ρI (t) = U(t, t0)ρ0 U(t, t0)
† (1.50)

where the additional hypothesis that the initial state ρ0 in invariant under the evolution by H0. It should

be noted that the direction of the evolution in the equation above is opposite to the usual for the state.

The expectation value of any observable is given by combining equations (1.48) and (1.50)

〈OI (t) 〉 (t) = Tr [ρI (t)OI (t)]

= Tr
�

ρ0 U†(t)OI (t)U(t)
�

≈

®�

1+ i

∫ t

t0

PI (t
′) d t ′)

�

OI (t)

�

1− i

∫ t

t0

PI (t
′) d t ′)

�¸

0

7The perturbation operator is denoted by the letter P to avoid later ambiguities
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= 〈O(t) 〉 − i

∫ t

t0

d t ′



[O0I (t), PI (t
′)]
�

0 (1.51)

where all averages 〈 · 〉0 are taken with respect to the unperturbed state ρ0, e.g. 〈O(t) 〉0 = Tr [O(t)ρ0]
displays only the explicit time dependence of the operator, whereas the operators in the commutator

have their constant term evolved from t0.

In the case of the Hamiltonian (1.4), we take as H0 = H(φ = 0), where the dependence of

H(φ)≈ H(0) + (∂φH)φ defines the perturbation

P(φ(t)) = (∂φH)φ(t) = −φ(t) L JN (0). (1.52)

We will focus on the observables of interest, the JN and J E currents. Their expectation values will be

denoted by jN and jE respectively, to keep the notation manageable. The shorthand N(E) implies that

the expression applies to jN and jE alike.

Suppose the currents depend explicitly on the phase with τN(E) = −∂φJN(E) (see page 74), then

JN(E)(t) = JN(E)(0)−τN(E)φ(t). (1.53)

The evolution in the interaction picture is given by the substitution JN(E) −→ JN(E)
I .

The expectation value for the current depends on the evolution of the state through equation (1.51),

with the additional dependence through 〈O(t) 〉 on the explicit phase of the current operators given by

(1.53). The total current, knowing that jN(E)(0) = 0, is

jN(E)
LR (t) = −τN(E)φ(t) + i L

∫ t

t0




[JN(E)(t), JN (t ′)]
�

0 φ(t
′) d t ′, (1.54)

where only the terms linear inφ(t)were retained. The first term on the r.h.s. depending explicitly onφ(t)
is absent from the canonical derivations [Mah00,Kub57], which do not consider observables depending

on the time. The formula is partially asymmetric between jN and jE , due to the fact that the source of

the perturbation for both (see Eq. 1.52) is the rescaled particle current operator P(t) = −L JN φ(t).
The LR of a system to an external perturbation is thus linear in the time-dependent expectation

value of an equilibrium correlation function, which we further analyze in the next subsection.

1.3.1 LR in the spectral representation

Fourier analysis is most useful for the long-time response of a system perturbed by a superposition

of periodic signals. The Fourier component of the response jN(E)(ω) is the reaction of the equilibrium

system to a perturbation in the form of a pure sinusoidal driving

φ(t) = φ(ω) exp(−iω+ t) (1.55)

with a small imaginary component η > 0 added to ω+ =ω+ iη in order to ensure convergence of the

following integrals. The field F(t) = − d
d tφ(t) in momentum space is given by F(ω) = −iω+φ(ω), so

the linearity of the response extends also to the derivative of the perturbation: if jN(E)∝ φ(ω), then

jN(E)∝−iω F(ω).
Passing to momentum space, fixing without loss of generality t0 = 0,

jN(E)(ω) =

∫ ∞

0

dt eiωt jN(E)
LR , (1.56)
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the famous Kubo linear relation

jN(E)(ω)≈ σN(E)(ω) F(ω) = −iωσN(E)φ(ω) (1.57)

derives from Eq. 1.54, defining the generic conductivity8

σN(E)(ω) =
i
ω+

�

τN(E) − i L

∫ ∞

0

dteiω+ t



[JN(E)(t), JN (0)]
�

0

�

, (1.58)

where all the operators evolve in the Heisenberg picture and the average is still in the initial unperturbed

state. Causality is properly taken into account, with the perturbation starting at t0 = 0 and the observable

being probed only at later times. The integral is the retarded Green function

χN(E)(ω) = −i L

∫ ∞

0

dt eiω+ t



[JN(E)(t), JN (0)]
�

0 . (1.59)

Using the Plemelj formula 1
ω+ = P 1

ω − iπδ(ω) it is possible to recover the real part of the conductivity

σ
N(E)
real (ω) = πδ(ω)

�

τN(E) +Reχ(ω)
�

− P
�

1
ω

�

Imχ(ω), (1.60)

which shows the structure of a regular (the analytical function Imχ) and a singular (delta-valued) part

σN(E)(ω) = 2πDN(E)δ(ω) +σN(E)
reg (ω). (1.61)

Integrating the conductivity over all real frequencies, and applying the Kramers-Kronig relation

∫ ∞

∞
P
�

1
ω

�

Imχ(ω) dω= πReχ(0), (1.62)

valid for the Green analytical functions, each conductivity is shown to obey the sum-rule:

∫ ∞

∞
σ

N(E)
real (ω) dω= π

�

τN(E) +Reχ(0)
�

︸ ︷︷ ︸

1/2 DN(E)

−
∫ ∞

∞
P
�

1
ω

�

Imχ(ω) dω

= π τN(E) (1.63)

In the case of the electrical conductivity, this is simply

∫ ∞

∞
σN

real(ω) dω=
π

L
|Hkin|. (1.64)

When the Hamiltonian is generic (non-integrable), the singular part of the conductivity vanishes at

T > 0, giving D = 0. In that case, σ(ω) = σreg(ω) and the integral over the Green function alone is

sufficient to test the sum rule. Keeping the sum rule with a positive sign was the reason for introducing

the counterintuitive minus sign in Eq. (1.53).

1.3.2 Green functions in the canonical formalism

To obtain estimates of the regular and singular parts of the conductivity, the Green function (1.59)

must be calculated, starting from the state at t0 = 0. It should be now mentioned that the formalism so

far is quite general, with slight modifications allowing for an initial state ρ0 which is not an equilibrium

8σE(ω) is called a transport coefficient.
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one, but for example obtained in a procedure of driving the system up to the time t0, before the probe

corresponding to the conductivity measurement at t > t0 [LGBP14].
The expectation value of the commutator

〈 [J(t), J(0)] 〉0 = 〈 J(t) J(0) 〉0 − 〈 J(0) J(t) 〉0 = iC>(t)− iC<(t) (1.65)

can be separated into the lesser C>(t) and greater C<(t) correlation functions. The retarded Green

function is given by the Fourier transform of the real–time correlators, the first of which has been explicitly

given in the canonical ensemble using typicality methods in Section 3.2.3. The greater correlation

function can be similarly computed, but it does not need to be.

The KMS condition [HHW67,MS59,Kub57], equivalent to the fluctuation-dissipation theorem and

valid for systems in thermal equilibrium, states that

〈B(0)A(t) 〉β = 〈A(t − iβ)B(0) 〉β . (1.66)

It can be used to express one correlation function in terms of the other in Fourier space

C>(−ω) = e−βωC<(ω). (1.67)

The Green function simplifies to

χR(ω) =
�

1− e−βω
�

L

∫ ∞

0

dt eiω+ t C>(t) =
�

1− e−βω
�

L C>(ω+), (1.68)

and the regular part of the conductivity at high temperatures follows from (1− e−βω)/ω≈ β

σreg(ω) = β L C>(ω+). (1.69)

In the canonical ensemble there is no further simplification to be made, C>(ω+) must be obtained from

real-time evolution, as already pioneered by [JP94], and recently with recent works emphasizing the

typicality argument [SG09,EF13,FM13,SKN+14,SGB14,SGB15].

1.4 Integrability and Dissipationless Transport

Small metallic rings in the quantum regime have been long known to allow for currents to flow

indefinitely, without showing any dissipative losses [BIL83]. The system can be left in a current-carrying

state by a small variation of the phase φ, and as long as the temperature and density of states are low

enough, the conduction band structure prevents decay into a state with different momentum, irrespective

of the interactions present.

Integrable systems on the other hand, allow finite amount of currents to flow without friction at all

temperatures, as long as the system is isolated9. The set of conserved operators from Eq. (1.40), among

which are an infinite number of currents10, exists independently of the temperature. The expectation

values of this set are algebraically precluded from decaying in time due to Umklapp or any other effects,

since the interacting quasi-particles of the model only scatter elastically.

In the integrable model we consider with W = 0, the most important conserved operator is the

energy current J E . If the system is phase quenched, i.e. the phase is changed abruptly at t = 0 and

9Driving the system breaks the isolation and the currents decay. For the moment only the quench protocol is considered.
10Imaginary Hermitian operators
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allowed next to evolve under a constant integrable Hamiltonian H(t) = H(0+), the observed current

has a constant value. The quench protocol corresponds to the use of a time-dependent phase

φ(t) =∆φθ (t), (1.70)

and since [J E , H] = 0 for t > 0,

jE(t) =



J E(0+)
�

(t) = Tr[eiH(0+)t J E(0+)e−iH(0+)t ρ0] = Tr[J E(0+)ρ0] = jE(0+), (1.71)

where all operators for t ≥ 0+ (the moment just after the quench) require to be evaluated with a finite

phase ∆φ, and the initial state ρ0 is arbitrary.
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Figure 1.6: Expectation value of the currents in an integrable (solid) and generic (dot-dashed) insulator, with

L = 24, N = 10, V = 3 and W = 0 or W = 1 for the integrable and generic system respectively. A dashed zero

reference line has been added to guide the eye. (a) The nonvanishing particle current jN (t) (b) The exactly

conserved energy current jE(t).

In Fig. 1.6 the result of a quench is shown, confirming that the energy current is exactly conserved.

However, the particle current JN does not vanish either, although it decays from its initial value, since it

is not conserved in the strict sense as [JN , H] 6= 0.

The non-decaying component of the currents after a quench leads to a singularly defined conductivity.

If jE(t) = jE(0+), then the regular part of the conductivity Eq. (1.59) vanishes as the commutator is

zero, leaving only the energy–current stiffness DE:

σE(ω) = 2πDEδ(ω) = πτEδ(ω), (1.72)

meaning that the full transport is determined only by the sum-rule. This is clearly reflected in the

conductivity (see Eq. 1.60), which shows only a delta-valued singular part. The analysis of the particle

current conductivity σN (ω) is not as simple, due to only partial conservation. The current decays to a

stationary value j∞ after some time, and this value directly measures the charge current stiffness DN . The

measure of the current after a sufficient time has passed is often used to measure DN [SGB14,KKM14,

KMHM14], which we also employ in Chapter 5. The ratio of the zero-frequency singular component to

the whole sum rule also gives a direct measure of the degree of conservation. A finite current stiffness is

a hallmark of ballistic transport, as opposed to the usual diffusive behavior, the former encounters no

dissipation [MS08,RS08,Zot99].
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In order to measure the stiffness component DN , it is useful to fit a broadened delta function of the

correct functional form (Lorentzian or Gaussian) to the conductivity. In systems with strong ballistic

transport, the ratio of DN to the total sum-rule is close to 1, due to the constraint

2πDN +

∫ ∞

−∞
σ

reg
real(ω) dω= πτ

N , (1.73)

which provides a way to calculate DN if σreg
real(ω) is known to sufficient precision, a method employed

historically in Ref. [HPZ11,BCW13,Sha09,SWZ93]. The required separation of the delta contribution

from the regular part can significantly contribute to a loss of precision.
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Figure 1.7: Singular (shaded in green) and regular (in yellow and blue) part of the real conductivity σN (ω),

calculated according to the methods from Section 2.4 and a Lorentzian fit of the δ(ω) peak broadened with a

Lorentzian of width η, system size L = 24, N = 10. (a) Integrable doped insulator with V = 3, with a strong stiffness

and finite-frequency conductance. (b) Integrable doped high-insulator with V = 5, nearly a perfect insulator with

minimal residual stiffness.

The LR conductivity is defined through the current response of the system to an infinitely small

quench in the magnetic phase. The F → 0 limit is however singular [RSS13], not allowing to extend the

results to a system driven by a finite electric field. The ratio of two currents characterized by a singular

response might still be finite in an appropriate limit, so we investigated how the ballistic transport is

modified when a finite field is switched on in Chapter 5.

1.4.1 Mazur bound on the Drude weight

The model we consider is the spinless-fermion version of the Heisenberg model, which in the

integrable W =∆2 = 0 case, has a macroscopic set of even (under particle-hole transformation) local

conserved operators Qn, leading to integrability. The even operators are real Hermitian, and they start

with the Hamiltonian Q2 = H. The odd-numbered conservation laws are imaginary Hermitian operators,

which can be interpreted as currents, the first of which is the energy current Q3 = J E . The higher-order

operators with n≥ 4 are beyond the scope of this dissertation, but can be generated algebraically by

application of a suitable ladder operator [CET01,GM94,Haw09,LZMG01]. As stated above and inferred

from Fig. 1.7, the particle current JN is not a strictly conserved operator, although it has a ballistic

conserved component

J̄N = lim
T→∞

1
T

∫ T

0

eiH t JN e−iH t dt, (1.74)
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which is the diagonal part of the current operator, in the eigenbasis of the Hamiltonian.

Mazur’s bound, originally derived in Ref. [Maz69] and popularized by Zotos [ZNP97,CZP95,ZP03],
used also in Ref. [DS03, JŽ11a, BCMM14, SKAS14, KBM12, BCW13, Žni11, KKM14, JŽ11b, KKHM15,

HMHCB03], is the formalization of the following hypothesis:

The ballistic component of JN is the result of its non-zero projections onto the set of conserved

quantities {Qn}.

The validity of the hypothesis was long proven for the doped system with N 6= L/2. In the particle-hole

symmetric case, DN was already known to be nonzero from Bethe ansatz methods [Zot99], but there is

no conserved local operator to satisfy the bound, as they are all even under PH symmetry. It was found

that DN > 0 in the metallic regime, i.e. when V < 2 (with a strict inequality); the Mott-insulator phase

for V > 2 naturally does not allow the flow of dissipationless current. Recently, the Mazur bound was

finally saturated by showing the existence of a set of quasi-local conserved operators, providing the

needed projections for the particle current in the odd sector [MPP15a,MPP14,PPSA14,Pro15].
We analyze the case of a doped Mott insulator, with L = 24 and N = 10 or L = 26 and N = 11, where

the additional charges break the particle-hole symmetry. In the Ising regime with V > 2, the finite Drude

weight DN > 0 is well taken into account by the projection on J E alone, since their Hilbert-Schmidt

scalar product 11 in non-zero. In the V < 2 regime, the bound is nonzero but it is not saturated using J E

alone.

The charge stiffness can be bound from below using the Mazur bound, a projection on every Qn as

fully derived in Ref. [MPP14]:

DN =
β L
2




J̄N JN
�

≥ DN
Mazur =

β L
2

∑

n

〈Qn J 〉2

〈Qn Qn 〉
≥
β L
2




J E JN
�2

β

〈 J E J E 〉β
. (1.75)

In the case of doped Mott insulators, Ref. [HPZ11] shows that Eq. (1.75) saturates the Drude weight,

meaning that DN ' DN
Mazur. The Mazur bound is calculated in an arbitrary equilibrium thermal state, as

the ratio of the expectation value of the operators. To numerically evaluate the numerator and denomi-

nator separately, it is convenient to use the canonical-ensemble Chebyshev expansions at temperature β

shown in Section 3.2.2.

The nonvanishing Drude weight is the most striking manifestation of the nonthermal behavior of

integrable systems. At long times, their state does not relax to a thermal state, where all observables

can be determined by the knowledge of the temperature β through the canonical density matrix of

the system ρβ = Z−1 exp[−β H]. All the conserved quantities retain their initial values at indefinitely

long times, requiring additional separate terms in the construction of the equilibrium density matrix.

Generally, the temperature is set by the constraint that the average energy at equilibrium is the same

as in the initial state of the quench: 〈H 〉β = 〈ψ(0) |H | ψ(0)〉. In integrable systems all the conserved

quantities have their own Lagrange multipliers {βi}. The equilibrium state is called the Generalized

Gibbs Ensemble (GGE), and it is given by

ρGGE(β1,β2, . . .) =
1

Z({βi})
exp

�

−
∑

βiQ i

�

(1.76)

with the set βi determined by the set of nonlinear integral equations

Tr [Q i ρGGE({βi})] = 〈ψ(0) |Q i | ψ(0)〉 ∀βi (1.77)

11The scalar product in the space of operators onH [Ols15]. Equivalent to an expectation value at infinite temperature.
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In the Extended GGE, the set of operators Q i is augmented by quasi-local operators. It was shown in

Ref. [MPP15a] that the Drude weight is saturated iff the state of the system relaxes to the (Extended)

GGE.

The existence of a Drude weight in integrable systems can be reconciled with RMT at a very intuitive

level, by noting that integrable systems have large degeneracies (the most probable spectral spacings

tend to zero). The large degenerate subsectors of the Hamiltonian allow for large diagonal elements

of the averaged operator J̄N . Conversely, generic systems have strong level repulsion with a vanishing

density of degenerate elements, thus the conserved part vanishes as well in the thermodynamic limit.

1.5 Thermoelectrical effects

Electrons are charged fermions, which under the effect of an external applied electric field generate

a current, due to the induced motion of the charges. Since the system possesses a well-defined energy,

given by the expectation value of the Hamiltonian, the motion also generates a flow of energy between

the sites of the system, which is measured by the energy current jE (see Section 5.1.1 for a derivation).

To each state of the system, a measured current can be unambiguously assigned.

In the framework of linear irreversible thermodynamics, where the thermodynamical forces12 that

bring the system out of equilibrium can be treated perturbatively, the notion of equilibrium is extended

[VR01, LJV08, SL78] to the one of local quasi equilibrium (LQE). In LQE, every small portion of the

system has still well-defined values of the intensive potentials (such as the temperature, or pressure),

while the system as a whole is out of equilibrium. In this case, the first law of thermodynamics

δE = δQ+µeδN
︸ ︷︷ ︸

δW

(1.78)

can be extended to the time-dependent case by considering fluxes of the quantities: the flow of the energy

in time13 is jE = δE
dt in this approach, and jN = δN

dt . In the relation above, the first law of thermodynamics

allows the identification of heat Q. We defined the electrochemical potential µe = µc + eV , where µc is

the chemical potential, and V an applied external electric field. The performed work δW is effected

only by changes in the particle number N . The corresponding relation for the fluxes is

jE = jQ +µe jN (1.79)

where the heat current (or flow) jQ has been identified. Very close to thermal equilibrium, this means

that we could define jQ = jE −µe jN , although an operator for Q is missing.

Continuing this train of thought, any change from the equilibrium value of the external potentials

(forces Fi) generates fluxes (currents j i). The fundamental quantity to consider is the entropy production

Ṡ =
dS
dt
=
∑

i

∂ S
∂ X i
︸︷︷︸

Fi

dX i

dt
︸︷︷︸

j i

=
∑

i

Fi j i , (1.80)

which for any natural process occurring close to equilibrium is maximal. The principle of maximum entropy

production is sometimes confusingly stated as “minimum entropy production” [Mar13,Cal57,Dom54] by

using an alternative choice of thermodynamical potentials. The thermodynamical forces Fi are defined

as derivatives of the entropy with respect to a variation of an extensive thermodynamical potential from

12Intensive quantities, such as a mechanical force, an electrical field or a chemical potential.
13This is not a formal definition of the quantum current operator.
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equilibrium. Any flux generated by a nonzero force brings the system back towards equilibrium, due to

the concavity of the entropy, so the entropy production according to the second law of thermodynamics

is always positive Ṡ ≥ 0. Anticipating our results, this is seen in Fig. 1.8, where the production in a

nonequilibrium state is very strong at the beginning (and nonthermodynamically convex), but vanishes

(Ṡ→ 0) when the system finally reaches the thermodynamical equilibrium. This is achieved by raising

the effective temperature of the system so much that no flow of current is possible, which is effectively

what we observe in the later chapters.
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Figure 1.8: Entropy density s(t) (solid line) as function of time in a driven system, with V = 1.5, W = 1.0, L = 24,

N = 12. The entropy was measured on a M = 4 sites subsystem, with the procedure outlined in Section 6.1.1. The

data is taken from the same simulation as the ones in Fig. 6.8. The entropy grows with a non-thermodynamical

convexity at the beginning (shaded) in order to maximize the rate of growth, later to settle and vanish when the

system reaches an effective equilibrium state, set by the infinite-temperature entropy density s∞ (dotted line),

calculated by Eq. (6.35)

For the energy and particle current the quantum operators are rigorously defined as observables in

Hilbert space. Their heat counterpart jQ has no corresponding expression, so a heat conductivity cannot

be defined as done for the others in Section 1.3.2, apart from semiclassical estimates on the phonon

conductivity.

This leads to many equivocal statements in the literature, where the energy current conductivity is

taken as the heat conductivity [KIM13,EOG15,MSLL12,PSH07]. The lack of applicable definitions is

the reason why the derivation of Fourier’s law

jQ(t, x) = κtherm∇
�

1
T (x)

�

(1.81)

in the quantum regime has proven impossible so far [BCMMP15,MAAACJ13,SG09,MH14,Tsc00,SL78],
and even attempts using the energy-current conductivity have been fraught with difficulties. A derivation

of Ohm’s law for closed system, given the precise nature of the particle current, will be outlined in

Chapter 5.

1.5.1 Thermoelectrical response

The thermodynamical response of a system to an external perturbation in general implies that all

possible fluxes become nonzero to maximize the associated entropy production. In the case of charged
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fermions, where the energy and charge transport are coupled, both types of currents can be stimulated

by the application of an external electrical potential. Symmetrically, a thermal gradient (e.g. heating

one piece of the system in order to push it away from the equilibrium temperature Teq) induces a flow

of particles, at the same time locally providing a movement of charges.

Following the notation of the great review [GSZ+11], the forces are given in a continuum description

by the gradient of temperature and the gradient of the electrochemical potential

FQ =∇
�

1
T

�

= −T−2∇T, FN = −
1
T
∇µe =

F
T

, (1.82)

which differ from the usual definition of forces (F stands for the induced electric field) in order to be

derivatives of the entropy function. They induce the currents through a matrix of transport coefficients
�

jN

jQ

�

=

�

L11 L12

L21 L22

� �

FN

FQ

�

. (1.83)

Onsanger’s theorem [Ons31], of great applicability [Cal48], states that sufficiently close to equilibrium,

if the dynamics are microscopically reversible [Cas45], the response matrix is symmetric (L12 = L21),

and positive definite to satisfy Ṡ > 0.

The four coefficients, in general nonzero, lead to four known effects by a proper configuration of

boundary conditions:

1. FQ = 0: when the whole system is kept at uniform temperature, Ohm’s law corresponds to the

diagonal component L11 via

jN =
L11

T
F = β L11

︸︷︷︸

L C>

F (1.84)

which captures the high-temperature character of the conductivity, as in Eq. (1.69).

2. FN = 0: when there is no applied field, the temperature gradient induces the flow of heat via

Fourier’s law, Eq. (1.81)

3. ∇T 6= 0, jN = 0: by keeping the system in an open circuit configuration, we prevent the flow of

current. Then, the first equation of (1.83) is equal to zero

L11
F
T
+ L12∇

1
T
= 0. (1.85)

This defines the open circuit voltage, when a temperature gradient is applied to the system,

F | jN=0 =
1
T

L12

L11
∇T (1.86)

= α∇T, (1.87)

known as the Seebeck effect, characterized by the coefficient α. The offdiagonal terms are known

as thermoelectric terms for this reason.

4. F > 0, T = const and FQ = 0: the Peltier effect is seen when a flow of current, induced by a nonzero

field at uniform temperature, produces a flow of heat. From the second equation of (1.83),

jN = L11
F
T

, jQ = L21
F
T

, (1.88)
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Figure 1.9: The thermocouple is the device where the Seebeck effect is best seen: two materials with different

electronegativity are connected together and the junctions are set at different temperatures. The circuit is interrupted

by a voltmeter to read the voltage produced by the accumulation of charges moved by thermal effects. Two materials

typically used are aluminum and copper.

the currents are actually proportional with jQ = L21
L11

jN , defining the Peltier coefficient Π

jQ = Π jN . (1.89)

Using Onsager’s relations L21 = L12, the Peltier and the Seebeck coefficients are proportional,

Π=
L21

L11
= Tα, (1.90)

being manifestations of the same phenomenon of coupled transport.

In Chapter 5, we analyze the situation of the Peltier effect induced in a homogeneous system, driven

by a finite field. Not having access to the heat current jQ, we study the similarly defined ratio R = jE/ jN .

It differs from the definition of the Peltier coefficient by a term proportional to µ

Π=
jQ

jN
=

jE −µ jN

jN
=

jE

jN
−µ= R−µ. (1.91)

Whereas the first term is the ratio of the expected values of two observables, the third is only defined in

thermal equilibrium.

In Chapter 7, we provide the first fully quantum description of a thermocouple, a device similar to

the one in Fig. 1.9, where the system is formed by a junction of two different metals, where a current is

driven by a field, generating a visible heating and cooling effect due to the induced transport of energy

(and heat) from one junction to the other.



Chapter 2

Numerical methods for quantum

thermal dynamics

We review in this standalone chapter all computational methods employed throughout the thesis,

summarized from an extensive bibliography, with the addition of a novel method in the last section. The

interested reader will learn all the basics and some implementation details needed to reproduce all the results

later presented.

The operators in quantum mechanics are by definition Hermitian. On the other hand, all systems that

can be simulated on a computer are necessarily finite. The models used in the thesis are short-ranged,

with local interactions. In the intersection of the requirements above, all the operators are represented

by finite, Hermitian, sparse matrices. These constraints pave the way for enormous simplifications, where

exact dense linear algebra is supplanted by iterative methods on sparse matrices, which require the user

just to implement an efficient multiplication operation between the sparse matrices and vectors.

The sparsity patterns are evident in Fig. 2.1. Only 3.6 · 105 entries are nonzero, out of 9 · 108, a fill

factor of 0.04%. Using sparse methods, a speedup equivalent to the inverse of the fill factor is expected.

In Section 2.4 we introduce a method, originally developed by the author of the Dissertation, to

greatly improve the computation of transport coefficients in the spectral representation, based on the

Lanczős method.

2.1 Lanczős method

In gapped quantum systems there is a surprisingly effective way to determine the ground-state

eigenpair (energy and vector) of a sparse Hamiltonian1 H: the Lanczős iteration, beautifully described

in Ref. [TB97, Saa03]. It is an iterative randomized method [HMT11], where the starting point is a

random vector in the full Hilbert space, from which the normalized ground state component is projected

out, at the same time providing approximated values for the extrema of the spectrum.

The method requires only a certain number of matrix-vector multiplications and the diagonalization

of a dense M ×M matrix, where M � N is the number of iterative steps taken. Here and throughout

the rest of the chapter N = dimH . Since most of the tight-binding Hamiltonians are sparse, the method

allows to use optimized Sparse Matrix Vector Multiplications (SpMV, commonly provided by sparse

linear algebra implementations [GKK+13], such as Intel MKL), instead of costly dense linear algebra

1Any Hermitian operator will do, so quantum observables all fall in the applicability range.

27
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Figure 2.1: Sparsity pattern of a small t − V −W Hamiltonian with L = 10 sites, in the q = 0 momentum sector.

routines. The time cost of the method is then O(M ·NNZ), where NNZ is the number of nonzero entries

in the matrix H. This is contrasted with full diagonalization which requires O(N3) operations, where

N is the dimension of the matrix. Since for typical sparse Hamiltonians2 NNZ∝ N , the method is

exponentially faster for larger matrices, as long as only the ground state is required. In case the ground

state is degenerate, the convergence will take place to a random superposition of the vectors.

The biggest downside of the plain Lanczős method is the inability to get any reliable information

about the spectrum away from the extrema. This can be overcome by applying the original Lanczős

method to the matrix resolvent (H−λI)−1 at every step of the iteration, with orders of magnitude higher

computational requirements, although due to the obvious interest there exist many methods targeting

explicitly the interior of the spectrum [FS12, Pol09, Dol06, Wya95, Sim13, WN95, CBPS13, LDZ12],
including the ubiquitous Arpack package (see [BDD+00] for a description). We have avoided this

difficulty by using Chebyshev expansions for thermodynamical applications requiring the spectrum

interior.

Typical precisions available for ground state calculations is ‖H‖2εmachine ≈ 10−14 for Hamiltonians

such as the one in Fig. 2.1, usually requiring M ∼ 100− 200 steps.

2.1.1 Implementation

We give here a complete recipe for the implementation of the Lanczős method, which can be found

also in the introductory materials [Koc11, San10], following closely [TB97]. The Lanczős method is

equivalent to choosing a proper subspace V of the Hilbert space and diagonalizing the Hamiltonian

projected in V . By choosing carefully V , it ensures that the extremal eigenvectors are well represented.

2The proportionality constant is the bandwidth of the matrix H, which is usually twice the number of fermions in the system.
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According to the Arnoldi approximation problem [TB97, Eq. (34.3)], V must be the Krylov subspace of

a random normalized vector q with nonzero overlap with the ground state, i.e. the orthonormalized

set3 of the powers of H applied to q

span(V ) = span
�

q, Hq, H2q, H3q, . . . , HM−1q
	

. (2.1)

Collecting the vectors
�

q, Hq, H2q, H3q, . . . , HM−1q
	

as columns of a M×N matrix K , one can obtain the

orthonormalized basis for the set by means of a Gram-Schmidt procedure, in practice implemented using

a QR-decomposition. Decomposing K =QR, the (truncated) unitary matrix V =Q has an orthonormal

span of columns. Since V V † = PKrylov 6= 1, the matrix is clearly not unitary, but acts as a projection into

a much smaller, M -dimensional Krylov subspace. Projecting H, one obtains the M × M dimensional

matrix T, or equivalently

H ≈ V T V †. (2.2)

The much smaller matrix T can be diagonalized without effort to

T = X D X †. (2.3)

The eigenvalues of H restricted to the subspace V are the diagonal elements D. The Hermitianity

condition H = H† immediately gives T = T †, but allows further simplifications. It can be proven that T

is tridiagonal real symmetric, so the storage and diagonalization of T has negligible computational cost.

Algorithm 1 Lanczős eigenvalue method

1: Input: The number of steps M , the operator H

2: Allocate vectors |qn−1〉, |qn〉, |v〉 of size N with zeros

3: Set |qn〉 to a normalized random vector with zero mean (random signs)

4: Allocate the vectors a and b of size M filled with zeros

5: for n= 1, 2, . . . , M do

6: Use |qn〉 as the n-th column of V (optionally)

7: |v〉= H |qn〉 Generate next vector

8: an = 〈qn | v〉 Projection on previous vector

9: |v〉= |v〉 − an|qn〉 − bn−1|qn−1〉 Orthogonalization on-the-fly with previous vectors

10: bn = 〈 v | v〉 Normalization of next vector

11: |qn−1〉= |qn〉
12: |qn〉= |v〉/bn

13: end for

Storing the full matrix V can be too costly when N > 105, so the full version of the Lanczős algorithm

consists in the orthogonalization on-the-fly of V , manipulating only 3 vectors at a time and building the

matrix T directly. The memory requirements are thus reduced to 3N if the vectors are updated in-place.

The algorithm is listed in pseudocode in Alg.(1), and returns the diagonal elements a and offdiagonal

b of T . All other elements are zero

T =



















a1 b1

b1 a2 b2

b2 a3
. . .

. . .
. . . bM−1

bM−1 aM



















. (2.4)

3The span is the linear algebraic subspace generated by a set of vectors.
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The algorithm as listed is sufficient to obtain the eigenvalues of H approximated as the eigenvalues

of T , but what about the eigenvectors of H? They are the eigenvectors of T rewritten in the computation

basis of the full Hilbert space

H ≈ V T V † = V X D X † V † = (V X )D (V X )† = U DU†. (2.5)

The equation gives the approximate eigenvectors U of H, U = V X . The first eigenvector is then the

approximate ground state, so |U1〉 = V |X1〉4. After the diagonalization of T , the matrix X is known

and its components give the coefficients of the expansion over the column vectors of V . However, the

full matrix V has not been built, as the vectors were determined successively: it is necessary to run the

algorithm a second time, generating the vectors again. To get an approximate eigenvector |ψ1〉 of the

ground state, it suffices to modify line (6) of Alg.(1), as shown in Alg.(2).

Algorithm 2 Lanczős eigenvector algorithm for 1st vector

5: for n= 1, 2, . . . , M do

6: |ψ1〉= |ψ1〉+ Xn,1 |qn〉
7: . . .

8: end for

9: return |ψ1〉

There is one parameter left free in the procedure, i.e. the number of steps M . It can be determined

by calculating the matrix T at every iteration and checking convergence of the approximate ground

state value E = D1,1 across iterations. When the convergence criterion

|Enew − Eold|
Enew

< 10−15 (2.6)

is met, the procedure must be stopped and the eigenvectors X are determined5. The procedure is then

run a second time if the corresponding eigenvector is required.

Caveat: The Lanczős algorithm is intrinsecally unstable, since the spectral radius ρ of H

ρH = max
‖ψ‖=1

‖Hψ‖ (2.7)

is usually ρH � 1, and the inner iteration at line (7) of Alg.(1) corresponds to taking successive powers

of H. Since at every iteration the norm 〈 v | v〉1/2 usually grows as large as ρH , truncation errors grow

at the geometrical rate ρn
H , causing a loss of orthogonalization between the columns of V and leading

to ghosts and other artifacts in the middle of the spectrum. As long as the ground state is unique, the

algorithm usually converges to it quickly6, but it has to be stopped as soon as Eq.(2.6) is fulfilled. The

instability can only be cured by running the algorithm in integer arithmetics, which is disastrous for

the performance, or by keeping the whole of V in memory and performing reorthogonalizations, which

requires too much memory. Possible solutions are mentioned in Ref. [SBR06,Saa03].
Note: The upper eigenvalue can be determined just as accurately and quickly, as DM ,M . This allows

the spectral bounds E0 and Emax to be calculated at once, which is necessary for the Chebyshev algorithm.

4By a single lower index we denote the column vector of the matrix
5The subroutine DSTEVR from LAPACK can be used
6At least as fast as the geometrical rate set by the spectral gap |(E1 − E0)/E0|
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2.1.2 Lanczős based function evaluation

Besides from the original purpose as spectral approximation and the solution of linear systems of

equations [Sim13, She94], the Lanczős method can be applied to functions of Hermitian operators.

Since H ≈ V T V †, then f (H)≈ V f (T )V † for analytical functions.

The most commonly needed application is the case of an operator function applied to a vector |v〉,
using a similar factorization to Eq. (2.5)

f (H) |v〉 ≈ (V X ) f (D) (V X )† |v〉. (2.8)

Keeping in mind the caveat at the end of the previous section, the global approximation of any f (H)
is pointless. The application on a vector f (H)|v〉 can be very accurate, however. If the vectors of the

Krylov space will generated started from |v〉 instead of a random vector, the space K will accurately

predict the action of f (H) if the function does not differ too greatly from the identity.

Since the vectors in V are approximately orthogonal, if |V1〉= |v〉/‖v‖, then all other columns will

be orthogonal to |v〉. In this case V |v〉 = [‖v‖, 0, 0, . . .] = ‖v‖ |e1〉, the first elementary basis vectors

with all zeros for components other than the first. The algebra then simplifies,

f (H) |v〉 ≈ (V X ) f (D)X † V |v〉= V X f (D)X †|e1〉= V f (T )|e1〉. (2.9)

This can be further simplified, since f (T)|e1〉 is the first column of the matrix f (T), which does not

need to be completely computed. Calling this vector C= f (T )|e1〉, its components can be shown to be

Ci =
�

X f (D) X †
�

i,1 =
∑

j

X i, j f (D) jX
†
j,1 =

∑

j

X i, j X ∗1, j f (D) j . (2.10)

The determination of the i-th component Ci is then mostly equivalent to a single scalar product, once

the whole vector f (D)7 has been precomputed.

Artifacts such as the appearance of ghosts in the truncated eigen-expansion are here inconsequential,

since the weight Ci associated with spurious eigenvalues is nearly zero. In fact it is a common technique

to monitor the weights over a carefully chosen f (H) to recognize and remove the ghosts [DWH+12].

2.1.3 Krylov based propagator

The most commonly encountered functions of the Hamiltonian, and the only one needed in this

manuscript, are:

1. The time propagator on a state: e−i H∆t |v〉

2. Finite temperature reweighting, or imaginary time propagator: e−βH |v〉

3. Pure state Green function for the operator O:

�

v

�

�

�

�

O
1

ω+H − E0 I
O

�

�

�

�

v

�

To calculate the time evolution propagator, it is enough to substitute the e−iH t for f (H) in the previous

section. The resulting approximation is called Krylov Time Propagator [MV03] in the literature, originally

publicized by [PL86]. It is accurate to numerical precision (10−16) if a sufficient of iterations M is taken

for the given time interval ∆t. For any number of steps, the propagator is unitary and the Hamiltonian

does not need to be bounded, so the applicability is perfectly general, even for systems treated within

the DMRG numerical scheme, where the spectral radius of the Hamiltonian exceeds ρH > 10300 for

7The matrix D is treated as vector
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reachable8 values of the system length L. In this case only the Krylov based time propagator is applicable

with great success [WC12] (see also [Sch04,SRU13,ZMK+15,DWH+12,GR06]), whereas the Chebyshev

based scheme becomes too demanding [WMPS14,HWM+11,BS14].
The time evolution in an interval ∆t on a pure state, with a constant Hermitian generator of the

time translation such as a time independent Hamiltonian, is given by the propagator e−iH∆t , which is

the solution of the Schrödinger equation in the interval (t, t +∆t). We apply Eq.(2.9) to |ψ(t)〉, the

state at time t,

|ψ(t +∆t)〉= e−iH∆t |ψ(t)〉= V e−iT∆t V †|ψ(t)〉= V e−iT∆t |e1〉=
M
∑

k=1

Ck|Vk〉. (2.11)

The equation is the expansion with coefficients Ck (see Eq. 2.10) over the subspace of orthonormal

Krylov vectors |Vk〉, starting with |V1〉= |ψ(t)〉. As such, the precision of the truncation to M terms can

be estimated a posteriori by

‖|ψ(t +∆t)〉approx − |ψ(t +∆t)〉exact‖ ≤ |CM |‖ψ(t)‖, (2.12)

i.e. bounded by the norm of the last coefficient of the expansion. While this does not allow to predict

the number of steps to be taken, it is useful to monitor if the expansion was sufficient. A sufficient

number of steps to be taken is [MA06]

M ¦ 1.5ρH∆t > 10, (2.13)

v which shows that the algorithm has a linear complexity in time, superior to the Runge-Kutta type of

integrators commonly used for nonlinear ordinary differential equations.

The algorithm for the Krylov based time evolution can be summarized in three steps, and it is a

minimal (5 lines of code) extension of the algorithm for the ground state:

1. Starting with |ψ(t)〉, perform M steps of the Alg. (1) (cost: M SpMV)

2. Compute C from Eq. (2.10) with f (x) = e−i x∆t , checking that M is sufficient

3. Run again the iteration in Alg. (2) using C instead of X1 (cost: M SpMV)

At least M = 10 is required for the algorithm to start and be effective, so the time step is to be

adjusted accordingly. Precisions down to 10−16, defined as in Eq. (2.12), can be achieved in about 30

SpMV for t = 0.5.

2.2 Time–Dependent Schrödinger equation

The previous section detailed how to compute a unitary approximation to the solution of the Time–

Independent Schrödinger equation (TISE), in which the time translation and energy operator H is

constant in time. We now review how to apply the techniques already known to allow for explicit time

dependence of the H operator.

The Time–Dependent Schrödinger Equation (TDSE) is given by

iħh∂t |ψ(t)〉= H(t) |ψ(t)〉 (2.14)

8The norm of even a simple spin Hamiltonian
∑

i σ
z
iσ

z
i+1 can be seen to grow as O(4L)
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where ∂t stands for the partial time derivative, and ħh will be set to 1 for the remainder of the manuscript.

In general, the solution of this equation is given in terms of the time propagator U(t0, t) from time t0

to t, which satisfies |ψ(t) = U(t0, t)|ψ(t0)〉〉 and U(t, t) = 1.
Formally the propagator can be computed as U(t0, t) = T e−i

∫ t
t0

dτH(τ), which requires the time

ordering operator T due to the noncommutativity [H(t), H(t ′)] 6= 0 for t 6= t ′. A practical and readily

implementable form is found by partitioning the time interval [0, t] over which the evolution is required.

The simplest choice is to use N segments δt long, such that N δt = t, in the limit δt → 0. Combining

the pieces the propagator is decomposed as

U(0, t) = lim
N→∞

N
∏

k=1

U(tk, tk +δt) = U(0,δt)U(δt, 2δt), . . . , U(t −δt, t), (2.15)

where every piece U(tk, tk +δt) can be replaced by a the time-independent propagator, such as the one

given in Eq. (2.11). Using the midpoint rule, i.e. approximating the time dependent Hamiltonian by its

value in the middle of the interval

U(tk, tk +δt) = exp
�

−iH
�

tk +
δt
2

�

δt
�

, (2.16)

leads to an error proportional to O(δt3) for every time step. However, since the number of time steps is

proportional to N , the total error is bounded by O(Nδt3) = O(Tδt2).
In case of nearly constant Hamiltonians, the midpoint rule is sufficient. However, the error depends

on the rate of change of the Hamiltonian over time. The parallel with integration theory, from which

the midpoint approximation takes its name, points to the need of a better rule in case the Hamiltonian

is varying rapidly over each time step δt, to prevent an unnecessary and costly increase in the number

of steps N . It is possible to find an operator Ω such that U(0, t) = e−iΩt for whole interval, requiring

thus only one propagator. This technique bears the name of Magnus expansion [PT07], which is a

cumulant expansion for the time ordered exponential. Using Ω in one propagator seemingly reduces

the complexity, however the expansion involves an exponentially growing number of commutators of

operators, which in turn increases the density of the sparse matrix exponentially, turning the perceived

advantage into an obstacle.

The solution is to apply Commutator Free Exponential-Time propagators (CFET), the equivalent of

Suzuki-Trotter formulas of higher order [HS05], instead of the linear subdivision scheme of Eq. (2.15).

The full derivation is found in Ref. [AF11,WC12,AFL12] so we report only the formulas needed for the

implementation. We employ the most popular 4th order CFET, in which the total error scales as O(δt4).
In all the cases treated in the thesis, the Hamiltonian decomposes in its time dependence as

H(t) = D+ f (t)G. (2.17)

Here D and G are full quantum operators, respectively the potential and hopping parts of the Hamiltonian,

whereas f (t) = ei F t is a scalar function defining the time dependence. In this case, the full propagator

over the interval (t, t +δt) is given by:

UCFET(t, t +δt) = exp[δt1(B + f1C)]exp[δt2(B + f2C)]exp[δt1(B + f3C)], (2.18)

with the time steps

δt1 =
11
40
δt, δt2 =

9
20
δt, (2.19)
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and the coefficients f1, f2, f3 in each time step are given by the linear combination






f1

f2

f3






=







h1 h2 h3

h4 h5 h4

h6 h2 h1













f (t + x1δt)
f (t + x2δt)
f (t + x3δt)






(2.20)

using

h1 =
37
66
−

400
957

√

√5
3

, h2 = −
4

33
h3 =

37
66
+

400
957

√

√5
3

,

h4 = −
11

162
, h5 =

92
81

(2.21)

and

x1 =
1
2
−

√

√ 3
20

, x2 =
1
2

x3 =
1
2
+

√

√ 3
20

. (2.22)

The total propagation over (t, t +δt) is split into three parts, during each of which the time evolution is

computed using the value of H(t) through f (t), at 3 internal points. The coefficients are the result of

matching the more complicated Magnus expansion up to the 5th order with the ansatz from Eq. (2.18).

The use of three exponentials is offset by greater time step δt allowed with the higher order expansion.

Every operator exponential should be calculated using a numerically exact unitary propagator such

as the Chebyshev based expansion, the Krylov space propagator (see Section 2.1.3), or other spectral

approximations [CP10]. They display linear performance in the time step δt, so the time cost is bound

by the number of steps taken, which scales as O(T 5/4) at fixed precision, just as the Runge-Kutta (RK45)

algorithm, although with a lower proportionality constant. If the variation of f (t) from Eq. (2.17) is

slow, longer intervals δt are possible. The step size is the same as required for the accurate integration

of f (t) with a 4th order method: since 3 points are computed for every δt, it can be comparable to a

half-period for a sinusoidal f (t).
Global interpolation methods can construct an optimal time evolution operator in the interval

δt, by approximating the time dependent part f (t) with exponential precision in the number of

steps [NTEKK10,TEKS12,ST07]. This goes beyond the scope of the thesis, since we required steps small

enough to plot observables along the evolution.

Note: The CFET algorithm as shown here can handle identically cases in which the time evolution

generator is not Hermitian. Lindblad operators L , usually non-Hermitian with a complex spectrum, are

commonly used to model dissipative interactions of quantum systems with an environment. In that case,

only the constant-time propagator eL t needs to be modeled differently.

For the TDSE the maximum precision is lower than for time independent problems. Using the

definition in Eq. (2.12), 10−6 for times t = 100 and F = 1.0 is reachable with about 2500 SpMV.

2.3 Thermodynamical averages

This thesis deals with high temperature dynamics of quantum systems. Static averages based on the

Density Of States (DOS) are however needed in abundance, for initialization, e.g. the average energy at

given temperature for the microcanonical ensemble, or for comparison, such as linear response high

temperature coefficients.

All states in the spectrum contribute to the averages at high temperatures, leading to the necessary

used of mixed density matrices. This can be however offset by judicious use of Monte Carlo averaging



CHAPTER 2. NUMERICAL METHODS FOR QUANTUM THERMAL DYNAMICS 35

techniques which we detail in the following. Quantities involving the whole spectrum, and the interior

in greater measure, require a completely different technology than Lanczős expansions, which target

only the extremes and skew severely the DOS distribution.

The need for global approximations leads immediately to the use of orthogonal polynomials for the

expansions. Functions of operators are interpreted as functions of the spectra, which are real valued

intervals. The simplification allows approximation theory to be applied. For bounded spectra, as in

the present case of finite tight-binding systems, the task is analogous to the optimal approximations of

functions in a bounded and closed interval [−1, 1], for which the natural basis is expressed in Chebyshev

or Legendre polynomials. Fourier methods require nonpolynomial function evaluations, and are thus

too expensive for operator valued functions. For unbounded spectra, Laguerre or Hermite expansions

are also available [VWB99], but they lack properties of absolute stability provided by bound intervals.

2.3.1 Chebyshev expansions

Chebyshev polynomials are the nearly optimal basis for all possible applications in bounded intervals,

with a flourishing literature and hundreds of applications. They are fundamental for solving PDEs

[Boy00,CHQZ06,Tre00] and are instrumental in bringing commonly needed algorithms to numerical

precision with reduced effort [HT12,MH03,AKT14,BT04]. A comprehensive and thought provoking

review is [Tre13].
The Chebyshev expansion can be thought to be the result of the application of Fourier series methods

to nonperiodic functions in the interval [−1,1]. The function is first made periodic by a change of

variables,

x = cos(θ ) with θ ∈ [−π,π]. (2.23)

When θ varies, x traces a closed loop in [−1, 1]. With this parametrization, any function f (x(θ )) can

be expanded in the even Fourier (cosine) series. The natural basis is thus provided by the Chebyshev

polynomials of the 1st type

Tn(x) = cos(nθ ) = cos(n arccos(x)) for x ∈ [−1, 1]. (2.24)

The basis functions fill the defining interval uniformly, with increased precision near the ends. A recursion

relation allows simple calculation:

T0(x) = 1, T1(x) = T−1(x) = x

Tm+1(x) = 2 x Tm(x)− Tm−1(x). (2.25)

In order to approximate any function, start with the ansatz

f (x) = α0 + 2
∑

n=0

αnTn(x). (2.26)

The coefficients αn are recovered using the standard scalar product αn = 〈 f | Tn〉. Chebyshev polynomials

are orthogonal under the scalar product 〈 f | g〉=
∫ 1

−1 w(x) f (x) g(x) dx with the weight

w(x) =
1
π

1
p

1− x2
. (2.27)

Keeping in mind the application requiring the scalar product to be used between matrix functions

in Hilbert space, the square root needs to be avoided. In the physics literature, it is common to use a
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Figure 2.2: (left) Chebyshev polynomials of order 3 and 7. They fill the interval [−1, 1] uniformly and provide an

excellent basis. (right) Poor convergence for the moments of a discontinuous function, which can lead to aliasing as

known from Fourier theory. The situation can be improved by a choice of a kernel (see Eq. 2.54).

different moment expansion than in numerical analysis. Instead of expanding f (x), the approximation

of w(x) f (x) = π
p

1− x2 f (x) is sought:

f (x) =
1
π

1
p

1− x2

�

µ0 + 2
∑

n=0

µnTn(x)

�

. (2.28)

In this case, the moment defining scalar product simplifies to µn = 〈 f | Tn〉=
∫ 1

−1 f (x) Tn(x) dx .

Innocuous as it may seem, if f (x) is analytic, then w(x) f (x) is not. This implies that numerical

precision can never be achieved with the expansion in the modified momenta Eq. (2.28), since the con-

vergence of spectral methods is dictated by the radius of analyticity9. The functions to be approximated

depend on the discrete (thus completely discontinuous) spectrum, so poor convergence was already to

be expected.

2.3.2 Operator valued expansions

We follow now the physics’ literature [WWAF06] to apply the expansions to concrete matrix problems,

the most important of which is the approximation of various DOS distributions [SRVK96].
The Hamiltonian needs to rescaled for the spectrum [E0, Emax] to fit into (−1, 1) (notice the excluded

end points to avoid overflows), otherwise the previous formulas are meaningless. The spectral bounds

are easily found using the Lanczős method, Section 2.1. Using a safety margin of α= 1%, we define

a =
Emax − E0

2−α
, b =

Emax + E0

2
, (2.29)

so

H̄ =
H − b

a
fits into (−1,1). (2.30)

The shift factor b centers the spectrum around 0, while a rescales it in the needed range and it is similar

in value to the spectral radius ρH .

To calculate the matrix elements of a function of the Hamiltonian of the type 〈L | f (H) | R〉, the

function is expanded in Chebyshev polynomials of the matrix H according to Eq. (2.28)



L
�

� f (H̄)
�

� R
�

=
1
π

1
p

1− x2

∑

n=0

µ′n



L
�

� Tn(H̄)
�

� R
�

by linearity (2.31)

9In case of Chebyshev expansions, by the distance of the nonanalyticity to Bernstein’s ellipse.
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where µ′0 = µ0, µ′n = 2µn for brevity. The Chebyshev polynomials in H are generated by the recursion

relation (2.25)

T0(H̄) = 1

T1(H̄) = H

Tm+1(H̄) = 2H̄Tm(H̄)− Tm−1(H̄). (2.32)

If the recursion is seen as a sequence of SpMV operations on the right-hand side |R〉, then starting with

|v0〉= T0(H̄)|R〉= |R〉,

|v1〉= T1(H̄)|R〉= H̄|v0〉,

|vm + 1〉= 2H̄|vm〉 − |vm − 1〉. (2.33)

To obtain a scalar matrix element:

1. Start the iteration with |R〉

2. Generate at every step a new vector |vm+1〉 with one SpMV (expensive)

3. Calculate the scalar product 〈 L | vm〉 (cheap)

4. At the end, sum up all scalar products and rescale in Eq. (2.31)

If multiple left-hand side vectors |L1〉, |L2〉, . . . are present, only additional cheap scalar products are

required at step 3. to generate the corresponding moments µL1
n ,µL2

n , . . ..

2.3.3 Chebyshev time evolution

If the function to be computed is f (x) = e−i x t , the coefficients for the original expansion Eq. (2.26)

can be calculated analytically

αm(t) =

∫ 1

−1

Tm(x)e−i x t

π
p

1− x2
dx = (−i)m Jm(t), (2.34)

where Jm(t) denotes the Bessel function of order m. The coefficients decay exponentially for m≥ m0 =
1.5t, leading to extremely fast convergence.

Expanding |ψ(t)〉= e−iH̄ t |ψ(0)〉 with the recursion defined in Eq. 2.32, starting with |v0〉= |ψ(0)〉

|ψ(t)〉= e−iH̄ t |ψ(0)〉=
∑

m=0

α′m Tm(H̄) |ψ(0)〉= |v0〉+ 2
∑

m=1

(−i)m Jm(t) |vm〉 (2.35)

The Chebyshev expansion has numerous advantages:

• Stable to arbitrary order, i.e. arbitrarily long time t

• Known order of the expansion in advance

• Does not require a second pass, unlike Eq. (2.11), since the coefficients are known already during

the iteration. The performance is double!

Using the unnormalized Hamiltonian H for the time evolution requires rescaling time and an additional

phase, while the vectors |vm〉 still need to be generated using the normalized H̄ for stability:

e−iH t |ψ(0)〉= e−iH̄at+i bt |ψ(0)〉= ei bt

�

|v0〉+ 2
∑

m=1

(−i)m Jm(at) |vm〉

�

(2.36)
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Note: As mentioned at the end of section 2.2, sometimes it is necessary to evolve the system using a

dissipative, non-Hermitian operator. By stretching the analyticity limits, the Chebyshev expansion can

work with operators having a slightly complex spectrum without breaking down. If the eigenvalues are

located inside the analyticity ellipse having its foci at −1 and 1, imaginary values are small compared

to the spectral radius and the expansion Eq. (2.32) is (precariously) stable and used in the literature

[Maz10,ZKAHD07], whereas Krylov based methods [Gut92] lose in popularity.

2.3.4 Density of States

The DOS is a scalar function of the energy, defined as

ρ(E) = 〈δ(H − E) 〉T=∞ =
1
N

N
∑

k=1

δ(E − Ek). (2.37)

By sampling its moments µn it can be reconstructed to arbitrary precision. The truncation to a finite

number of moments corresponds to a smoothing of the distribution, which is a necessary step to obtain

results meaningful in the thermodynamic limit [HWM+11]. By necessity, the sampling procedure

acquires the moments of ρ̄(Ē), the distribution function in the rescaled energy range [−1, 1], which can

be later converted to the proper ρ(E). The moments are defined by the scalar product

µn =

∫ 1

−1

ρ̄(Ē)Tn

�

Ē
�

dx =
1
N

N
∑

k=1

Tn(Ēk)

=
1
N

N
∑

k=1




k
�

� Tn(H̄)
�

� k
�

=
1
N

Tr
�

Tn(H̄)
�

. (2.38)

The central insight of the matrix valued expansion theory is evident: the interplay between functions

defined on the spectrum and their operator valued version. Sampling a function turns into an expansion

corresponding to Eq. (2.32).

The trace in Eq. (2.38) needs to be evaluated for the moments to be available. This is possible by

performing a stochastic trace sampling. The trace of an arbitrary operator A can be approximated via

Monte Carlo sampling, using a sequence of R random vectors |r〉

Tr [A] =
1
N

N
∑

k=1

〈k |A | k〉 ≈
1
R

R
∑

r=1

〈r |A | r〉 . (2.39)

Converge is typical of Monte Carlo methods, where the error decreases as O(R−1/2) when the number of

random vectors is increased. The dimensionality N of the Hilbert space also dramatically influences the

converge, since for typical systems (see Section 3.1.2) the error scales as O
�

N−1R−1/2
�

, i.e. geometrically

in the number of sites L of the system, since N is usually exponential in the volume.

To sample stochastically the moments:

1. Generate a normal vector |r〉 with random zero-mean entries

2. Run the recursion in Eq. (2.32) with |v0〉= |r〉, saving the moments µn

3. Average the moments µn over R different starting vectors



CHAPTER 2. NUMERICAL METHODS FOR QUANTUM THERMAL DYNAMICS 39

2.3.5 Thermal expectation values

Scalar expectation values of the Hamiltonian are easily computed if the DOS is available, via

〈H〉=
1
Z

Tr
�

H e−βH
�

=
1
Z

∫ Emax

E0

Eρ(E)e−βE dE =
1
Z

∫ 1

−1

(aĒ + b) ρ̄(Ē)e−β(aĒ+b) dĒ (2.40)

Z = Tr
�

e−βH
�

=

∫ Emax

E0

ρ(E)e−βE dE =

∫ 1

−1

ρ̄(Ē)e−β(aĒ+b) dĒ. (2.41)

It is easier to use the reconstructed rescaled density ρ̄(Ē), which requires scaling also the exponential

factors. Function averages such as 〈 f (H)〉 can be obtained by substituting f (aĒ + b) in Eq. (2.40).

What about the expectation values of other functions? What is the average of the observable A at

inverse temperature β? It is the average of the expectation value of A(E), the density of A at average

energy E, divided by Z obtained from Eq. (2.41)10,

〈A〉=
1
Z

Tr
�

Ae−βH
�

=
1
Z

∑

k

〈k |A | k〉e−βEk =
1
Z

∫ Emax

E0

�

∑

k

〈k |A | k〉 δ(E − Ek)

�

e−βH dE

=
1
Z

∫ Emax

E0

a(E)e−βH dE (2.42)

where the density of an operator at finite energy

a(E) =

�

∑

k

〈k |A | k〉 δ(E − Ek)

�

(2.43)

can be sampled via its moments

µA
n = Tr [ATn(H)] (2.44)

using the random sampling of the trace together with Eq. (2.31), where |L〉= A|r〉 and |R〉= |r〉

µA
n = Tr [ATn(H)] =

1
R

R
∑

r=1

〈 r|A Tn(H)|r〉. (2.45)

Computing M moments using R random vectors requires O(M R) sparse SpMV, plus additional scalar

products if more left hand sides (for expansions of the density of multiple operators A1, A2, . . .) are

needed.

Often the average value of a function at a certain energy is sought, since a(E) equals the micro-

canonical expectation value. The expansion (2.45) provides a means for the approximation, if certain

conditions are met. Consider the a(E) as a set of random variables indexed by the energy. The scaling

of the point-wise variance of a(E), as a function of M and R, provides a quantitative condition: if a(E)
uniformly approaches a well defined distribution in the thermodynamic limit, the system satisfies the

ETH (Eigenvalue Thermalization Hypothesis) [SKN+14,SHP13]. The density ρ(E)δE on the other hand

provides a rough count of the eigenvalues in an interval (E, E + δE) [DPS13]. Even if (point-wise)

variance of a(E) does not reach zero in the thermodynamical limit, the distribution for a finite matrix

can be approximated if the number of steps M and random vectors R are taken high enough.

The thermodynamical meaning of the normalization Z is connected to the count of states, since

the available phase space (or rather Hilbert space, in this case) grows as the result of heating. The

thermodynamical free energy F is just

Fβ = −β−1 log Zβ , (2.46)

10Z is also an average quantity defined over the density of energy states
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Figure 2.3: Thermal expectation values, for 4 different parameter sets of the t − V −W model with (L=24, N=10,

dimH ≈ 2 · 106), obtained using only the thermal expectation values based on the density of states of the energy

ρ(E). (a) DOS appearing smooth at this resolution, (b) average internal energy as a function of β (c) thermodynamic

entropy (d) heat capacity at constant volume. The energy in panel (b) is seen converging to the different ground

state energies of the systems.

which allows easy calculation of the thermodynamical entropy Sβ using the internal energy Uβ = 〈H 〉β ,

Sβ = β[Uβ − Fβ]. (2.47)

Another important function is the thermal capacity Cv
11, proportional to the variance of the energy

Cβ = β
2
�




H2
�

β
− 〈H 〉2β

�

. (2.48)

The DOS of the Hamiltonian, the internal energy and the last two thermodynamical functions, are plotted

in Fig. 2.3. For the thermodynamical entropy to be consistent with the third law of thermodynamics,

the normalization constant Zβ for β = 0 must be normalized to Zβ=0 = dimH , so in the trivial limit of

infinite temperature we can set the entropy explicitly

Sβ=0 = log Zβ=0 = ln(dimH ), (2.49)

which on the other hand is equivalent to supplying an absolute scale for the entropy, S(T = 0) = 0. The

DOS in the figure has been obtained by sampling M = 1000 Chebyshev moments, averaged R = 10

times; it appears nearly smooth, due to the fact that the resolution (see Eq. (2.55) below) is three orders

of magnitude too small to resolve the individual states. The difference between integrable (W = 0) and

nonintegrable (W = 1) systems is negligible in the average values of the DOS and observables, affecting

11At constant volume
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mostly the point-wise variance (not shown in the figure). The most visible differences here are due to

the difference in the energy between weaker (V = 1.5) and stronger (V = 3) interactions.

2.3.6 Reconstruction from the moments

For the scheme to be useful, the reconstruction of all aforementioned functions must be possible

from a limited number of moments. The partial sum

fM (x) =
1

π
p

1− x2

�

M
∑

n=0

µ′nTn(x)

�

, (2.50)

converges uniformly

lim
M→∞

| f (x)− fM (x)| → 0 ∀x ∈ [−1, 1] (2.51)

if a smoothing kernel is properly chosen. The choice of a good kernel is necessary in order to avoid

the Gibbs phenomenon, unwanted and unavoidable (even for M → ∞ limit) finite oscillations in

fM (x) if f (x) is not continuous. All densities sampled (equations 2.37 and 2.43) fall into this category.

Discontinuous functions have weakly decaying moments, |µn|= O(1/n) or worse, so a finite density of
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0.4

0.6

0.8

1.0

1.2

Box function
50 moments
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Figure 2.4: The effects of choosing a good smoothing kernel. The original discontinuous box function (dashed blue

line) is approximated by a truncated expansion with 50 moments (equivalent to equation (2.50)), showing wild

Gibbs oscillations and lack of positivity. Once smoothened by the Jackson kernel (2.54) (red line), the reconstructed

function is completely positive, does not oscillate and retains optimal resolution, measured by the maximum distance

on the x-axis from the step.

moments is always left when truncating the series to M . A complete truncation in momentum space

corresponds to the multiplication with the box function 1− θ (x − n). In real space, this is a convolution

with the rapidly oscillating, non-positive sinc function. The result is uncontrolled oscillations which can

lead to the reconstructed distribution being nonpositive, which is extremely detrimental to numerical

averages. The solution is provided by [WWAF06], defining the optimal Jackson kernel, a function similar

to a Gaussian smoothing kernel but defined over finite support M :

gJ
n =
(M − n+ 1) cos πn

M+1 + sin πn
M+1 cot π

M+1

M + 1
. (2.52)
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Figure 2.5: The resolution for a typical reconstructed density of states ρ(E) dramatically increases with the number

of moments sampled. The Hamiltonian is that of the t − V −W model, with L = 12 and a total number of states

N = 8008.

The Jackson-smoothed moments µn −→ µJ
n = gJ

nµn lead to uniform converge of f J
M .

The reconstruction of f (x) proceeds using the regularized moments µJ , summing the functions

Tn(x) obtained recursively from Eq. (2.25). The function fM (x) is best reconstructed from M available

moments, if computed at the points

xk = cos
π+ 1/2
M + 1

for k ∈ {1,2, . . . , M}, (2.53)

which are the roots of TM (x) [MH03], or Chebyshev points of the first type12. Their advantage is they

avoid the points {1,−1}, poles of Eq. (2.50). Using the functions reconstructed at f (xk), the integrals

become also exact for Chebyshev polynomials (Gauss-Lobatto formulas), so the functional evaluations

in equations (2.40)-(2.42) have the least error. The precise sum with all the normalization factors is

∫ Emax

E0

Eρ(E)e−βE dE 7→
1
πM

∑

xk

(axk + b)ρ(xk)e
−β(axk+b) . (2.54)

The density function reconstructed this way has an integral rigorously equal 1.0 and is always

positive, which does not happen if a proper kernel is not chosen.

The high order Jackson kernel guarantees a relative resolution

σrel =
π

M
(2.55)

steadily improving with the order of the expansion. Whereas a bare series can attain perfect resolution

if the function is completely interpolated in M moments, the use of a kernel smooths the partial series,

leading to loss of resolution but providing a safety net against worst behavior, an indispensable trade-off

if the expansion has to be truncated.

The maximum precision is limited by the notoriously poor Monte Carlo convergence in the number

of samples R. Together with the impossible convergence of the moments of a(E) or ρ(E), the maximum

precision is very far away from the machine limit, and about 1% in our calculations.

12The choice made in numerical analysis are points of the first type, which are the extrema
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2.3.7 Zero temperature spectral functions

Briefly mentioned in subsection 2.1.3, the zero temperature spectral functions of an operator A are

a staple of condensed matter theory, deserving another cursory mention here, for sake of comparison.

They are defined as

A(ω) = − Im
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Following a similar derivation to Eq. (2.42), the spectral function A(ω) can be expanded after a rescaling

ω→ ω̄, into a series of the type Eq. (2.28). The moments are simply as
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where the recursion starts with |v1〉= |ψA〉 and does not require a stochastic trace, giving it accuracy

down to the resolution π/M . The guaranteed converge and speed are the reason for its wild popularity

[AF08,BS14,HWM+11,WMPS14], to mention a few.

Lanczős based methods however outperform this type of expansion for a pure state, and a general-

ization (with applications) by the author will be now presented.

2.4 Numerical Equilibrium Linear Response

In this section we present previously unpublished numerical methods employed to calculate the

finite-temperature conductivity σN (ω) for the particle current JN , or the transport coefficient σE(ω) for

the operator J E when the system is driven by an electric field. The conductivity of a system is defined by

its linear response, which was briefly reviewed in Section 1.3.

The most expedite way to calculate the conductivities in the system under consideration, is to use

the LR formalism introduced in Section 1.3.1, but formulated in a pure state instead of the canonical

ensemble. The equilibrium microcanonical state is analyzed detail in Section 3.2.4, and it is used as a

starting point for the TDSE but provides numerous advantages also for this kind of calculation.

The regular part of the (generalized) conductivity is related via Eq. (1.60) to the imaginary part of

the retarded Green function ImχAB(ω) between two operators A≡ JN , and B ≡ JN or J E . The spectral

Green function is related to the correlator C>AB(ω) via Eq. (1.68), and the latter will be calculated using

Lanczős expansions for a function of the Hamiltonian, introduced in Section 2.1.2. We distinguish two

cases:

• Diagonal Green function: when A= B = JN , it serves to calculate the optical conductivity σN (ω),
for which efficient expansions were developed already in the 1970.

• Offdiagonal Green function: they are needed to calculate the ratio jE/ jN , which depends on

σE(ω). We develop the method to treat efficiently the case with arbitrary operators A 6= B, using

the microcanonical ensemble.

2.4.1 Correlation functions in the microcanonical ensemble

The microcanonical state |ψE〉 corresponding to the temperature β satisfies the approximate eigen-

value equation H|ψE〉 = Ē|ψE〉, where Ē = 〈H 〉β . The time-evolved state |ψE(t)〉 = e−iH t |ψE〉 is an
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excellent approximation to the time-evolved thermal state initially prepared at the temperature β , as

shown in Chapter 3. Moreover, the definition of the microcanonical state allows the great simplification

e−iH t |ψE〉= e−iE t |ψE〉. (2.58)

The correlation function in a pure state ensemble is a scalar product between two time-evolved states,

acted on by the observable and perturbation in a different order

C>(t) = −i 〈BI (t)A(0) 〉= −i
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The expression can be simplified using Eq. (2.58)
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with the time appearing only once, as opposed to twice as in Eq. (3.42). The Fourier transform is

C(ω+) =
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where ω+ =ω+ iη,η > 0. This is formally identical to the value of the correlator at zero temperature,

with the ground state substituted by the microcanonical finite-temperature state.

The traditional solution, due to Haydock [HHK72,HHK75] and nicely summarized in Ref. [Dag94],
used exclusively throughout the literature [JP00], is to expand the diagonal elements of the correlator

C(ω) =



ψE

�
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�

in the Krylov basis, requiring that B = A = A†, limiting the

scope of the approximation. The value C(ω) is interpreted as the first component of the solution of

a linear system. By rewriting |φA〉 = A|ψE〉, it is found that C(ω) =



φA | (ω+ + E −H)−1φA

�

. If the

Lanczős recursion with M steps for the function f (H) = (ω+ + E − H)−1 is started from the vector

|v1〉= |φA〉/
p

〈φA |φA〉. Inserting the approximate projection into the Krylov space V †V , one obtains

according to the methods and notation outlined in Section 2.1.2

C(ω)≈ ‖φA‖2
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= ‖φA‖2 〈e1 | f (T ) | e1〉= ‖φA‖2(ω+ + E − T )−1
1,1, (2.63)

where T = V H V † is the tridiagonal M ×M matrix corresponding to the projected Hamiltonian in the

Krylov space V , and only the first element of the resolvent of T is needed, since V |v1〉 = |e1〉 which

is the first basis vector. This scalar quantity is then computed as a continued fraction in the Lanczős

expansion coefficients an and bn obtained from the matrix Eq. (2.4). While not without advantages,

such as the possibility to extrapolate the expansion beyond M terms, the resolution provided is limited,

being equivalent to the expansion in Lorentzians, mentioned below.

2.4.2 Novel off-diagonal method

The difficulty in obtaining the off-diagonal matrix elements of the correlation function such as

Eq. (2.62), is that the right-hand and left-hand state are different in

C>(t) = −i
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with |φA〉= A|ψE〉 and |φB〉= B|ψE〉, whereas the Lanczős expansion of ei(E−H)t works best if the final

and initial state are the same. Nonetheless, departing completely from the resolvent-based approach, we
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use spectral representation, expanding the exponential using the approximate eigenvalues εn and eigen-

states |Un〉 of the Hamiltonian, from an M step Lanczős expansion from the state |v1〉= φA/
p

〈φA |φA〉.
Reminder: The approximate eigenvalues and states are obtained by Eq. (2.5)

H ≈ V T V † = V X D X † V † = (V X )D (V X )† = U DU†. (2.65)

The approximate eigenvalues εn are the elements of the diagonal matrix D

εn = Dn,n, (2.66)

whereas the corresponding approximate eigenstates |Un〉 are the columns of the matrix U

|Un〉= V Xn =
∑

k

VkXk,n =
∑

k

Xk,n|vk〉, (2.67)

which is a sum over all Krylov vectors |vk〉 with the coefficients Xk,n.

This is equivalent to substituting ei(E−H)t ≈ V † ei(E−H)t V =
∑

n |Un〉〈Un|ei(E−εn)t in (2.64):

C>(t) = −i
M
∑

j=0

〈φB |Un〉e−i (εn−E)t 〈Un |φA〉 . (2.68)

The Fourier space version C(ω+) is just the transform of the approximation (2.68)
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for any desired frequency ω+.

The only nontrivial quantity to calculate is one of the vectors of scalar products. Without loss of

generality, let us choose 〈φB |Un〉 with B 6= A as the nontrivial case, matching the interesting case of

B = J E and A= JN . The other scalar products 〈Un |φA〉 are already known in the literature, since

〈Un |φA〉= ‖φA‖ 〈V Xn | v1〉= ‖φA‖ 〈Xn | e1〉= ‖φA‖ X1,n, (2.70)

the scalar products are just the rescaled components of the eigenvectors in Krylov space. The other

scalar products do not benefit from this trick, since |φB〉 does not correspond to a vector of the Krylov

basis, and would require the construction of all the Hilbert space vectors |Un〉, in turn requiring access

to the matrix V row-wise. Since the columns are generated on-the-fly, the matrix would be needed in

its entirety to perform the scalar products. But V is useless to store for M = 1000 and a Hilbert space

dimension of D = 107, since it would require accessing

16M D bytes= 1.6 · 1011 bytes= 149 GB of hard-drive space (2.71)

in the wrong order, i.e. without the chance to cache any result in memory.

Many solutions have been proposed, from using double Lanczős expansions13, limiting each to

about M ∼ 100, or to use the less stable and accurate biorthogonal expansion [CBPS13]14. Let us now

13One on each side of |φ〉
14Private communication at a conference
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show the optimal solution, which can be used also for ground-state Green function, and allows the

simultaneous computation of as many different observables (represented by different 〈φB1|, 〈φB2|, . . .)

on the left-hand side of the correlator as needed at negligible cost.

The approximate eigenvectors can be seen as either |Un〉 inH (Hilbert space), or as Xn in K (Krylov

space), connected by the linear projections

H
V †

−−−−−−*)−−−−−−
V

K , (2.72)

meaning that a vector could be converted either way

|φ〉H 7→ |φ〉K = V †|φ〉H and |φ〉K 7→ |φ〉H = V |φ〉K , (2.73)

so the scalar products can be computed in either space

H 〈Un |φB〉H = H 〈V Xn |φB〉H = K




Xn |V †φB

�

K . (2.74)

The vectors in K are entities described by M scalars, as opposed to the D� M entries in the full

Hilbert space. Whereas it is inconvenient to up-project Xn into the Hilbert space, it is straightforward to

project any vector into Krylov space and perform the scalar product in the dimensionally-reduced space.

It is simple to perform the projection on-the-fly, while generating the Krylov space vectors |vk〉: the n-th

component (|φB〉K)n = 〈 vn |φB〉H demands a relatively cheap scalar product operator.

Summary To compute the generic correlation function between two current operators JN and J E:

1. Start the Lanczős procedure on |φA〉= JN |ψE〉, on the microcanonical state with energy E

2. Generate the orthonormal vectors |vk〉

3. Tabulate the M -dimensional projected vectors V †|φA〉=
p

〈φA |φA〉|e1〉 and V †|φB〉H = |φB〉K

4. Diagonalize T

5. Obtain the eigenvalues εn from the matrix D and the eigenvalues |Un〉 from the columns of X

6. The scalar products 〈Un |φ〉 are just the components of the matrix-vector product in Krylov space

〈Un |φ〉= (X †|φ〉K)n (2.75)

7. Save the M eigenvalues ε j and 2M scalar products 〈Un |φ〉

8. Calculate Eq. (2.69)

So far the formalism has been quite general, not limited to the real or imaginary part of C(ω+), which

is another shortcoming of the resolvent approach. However, only the imaginary part of the correlation

function is needed for the real conductivity in Eq. (1.60). Using again Plemelj’s identity,

Im C(ω) =
M
∑

n=1




U j |φB

� 


U j |φA

�

δ(ω+ + E − ε j). (2.76)

The sum of weighted delta peaks is unphysical, since the function must be continuous in ω in the

thermodynamic limit. The delta functions must be smoothened to leave only frequencies which do not

resolve the individual energy states [JF07,BSW09,PWA09,BSS12]. The prescription given in Eq. (2.55),
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σrel = π/M is reasonable also in this case, simultaneously defining the resolution for the smoothened

delta functions and an upper limit on M ∼ 1000.

Traditionally, the Lorentzian smoothening δ(ω− E) −→ η
(ω−E)2+η2 with a small η > 0 is taken for

granted, being equivalent to taking the imaginary part of Eq. (2.69), and it is the basis for the resolvent

expansion of Haydock. However, there is freedom to choose any other representation of the delta

function. The choice

δ(ω− E) −→
1

σ
p

2π
exp

�

(ω− E)2

2σ2

�

(2.77)

leads to a significantly improved resolution, without the power-law tails of the Lorentzian. The

Chebyshev-based methods are often touted as having an exponentially better resolution, but the ad-

vantage is completely leveled with the prescription in Eq. (2.77). The Lorentzian smoothing however

has important additional analytical properties, not required here. If only the imaginary part is needed,

the prescription above together with a sufficiently large σ = Emaxπ/M leads to an overall improved

correlator resolution.
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Figure 2.6: Correlation functions (2.62) in the spectral representation, calculated on the same state |ψE〉, with

two methods for the resolvent: exact diagonalization of the Hamiltonian and Lanczős based expansion (2.79) with

few moments M/D = 0.01 and Lorentzian smoothing. The system is integrable, with V = 1.5 and W = 0.0, of

very small size L = 16, N = 7, D = 11440 to allow the diagonalization of the Hamiltonian. Due to integrability,

all the correlators involving J E are delta shaped: it requires perfect cancellation of all spurious peaks, which is

achieved well by the Lanczős expansion. (a) Correlator contributing to the electrical conductivity, starting the

Lanczős expansion with JN |ψE〉 (b) Mixed correlator, used in the calculation of the Peltier coefficient, started with

JN |ψE〉 (c) Thermal conductivity correlator, using the scalar products 〈Un |φE〉 obtained from an improper starting

vector JN |ψE〉: with minimal 1% loss of precision due to the improper basis (d) Thermal conductivity in the proper

basis starting with J E |ψE〉

We are now able to quote the final form for the regular real conductivity, for both the J E and JN
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observables:

σN(E)
reg (ω) = L

1− e−βω

ω
Im C>N(E)(ω), (2.78)

Im C>N(E)(ω) =
M
∑

n=1
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2π)−1 exp
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(2.79)

2.4.3 Validity

The quality of the approximation still needs to be discussed. We have made explicit the connection

between the real time (2.68) and spectral (2.79) version. They would be completely equivalent, if

the correlator were to be extrapolated to infinite real time before taking the Fourier transform, and

the Lorentzian smoothing15 was used in (2.69). If the time evolution is discrete and time-limited up

to a maximum time T , the signal C(t) needs to be windowed properly [SS11] for the Fast Fourier

Transform to give meaningful results, unless T is so big that C(t > T) ≈ 0. The alternative is Linear

Extrapolation [RGSB08,BHVC09,MWH+10a,BSW09], where the series C(t) is nonlinearly fitted with a

sum of decaying complex exponentials, so the components of C(ωn) can be extracted more precisely

than allowed by a linear FFT with windowing.16.

The spectral version (2.79) is equivalent to a perfect analytical extrapolation of the time signal,

without any artifact, and can have much higher resolution thanks to the Gaussian, as opposed to

Lorentzian, smoothing. Thus it is at least as reliable as the microcanonical approximation used for the

initial value C(0) =



ψE

�

� JN(E)JN
�

� ψE

�

, since the Krylov time propagation procedure is numerically

exact.

15Corresponding to adding a regularizing factor e−ηt in Eq. (2.68)
16The “missing” information is provided by smoothness and analyticity assumptions built-in in the extrapolation



Chapter 3

Pure state thermodynamics

In this chapter the theoretical basis for efficient high-temperature quantum computations is introduced,

showing how pure states are sufficient for a numerically accurate description of arbitrary observables, in

equilibrium and during time evolution.

Many–body quantum mechanics is fraught with an exponential amount of parameters needed for a

complete description. Dirac in 1929 prophesied that since the equations are impossible to solve exactly

in most cases, the effort will be concentrated on better approximate methods. History teaches that

macroscopic numbers of degrees of freedom have not made classical physics impossible, just ushered

the era of statistical mechanics, in which the accuracy of the prediction scales as the inverse of the

dimensionality of the problem.

In this section we deal with generic quantum systems, not restricted to one model in particular, but

with examples taken in the Heisenberg model. The number of real parameters needed to describe a

pure quantum state is twice the dimensionality of the complex vector space of the wavefunctions. It

is the Hilbert spaceH of L spins (see Section 1.1.1), which we consider for simplicity as qubits with

two degrees of freedom with no additional constraints, with complex dimension D = dimH = 2L .

Computations on a single server realistically support up to 107 real parameters, which limits the available

size to L ' 23. Generic quantum states are represented by density operators ρ on the Hilbert space,

needed for the description of mixed states characterized by a (classical) probabilistic superposition of

quantum pure states,

ρmixed =
D
∑

k=1

pk ρk = |ψk〉〈ψk| (3.1)

with pk the probability of each pure state ρk = |ψk〉〈ψk|. Such a sum leads to dense, semi-positive

definite, normalized Hermitian operators of rank N , with dim(ρ) = 4L − 1 real parameters. Writing a

full thermal state is possible only for L ' 12, drastically limiting the available system size.

Additional use of symmetries shown in Section 1.1.1, such as restricting the magnetization Mz to

take a particular value, the use of invariance under translations or spacial reflections, can bring the

number of available sites to L ' 32 for calculations involving pure states. Is that enough to extract

relevant thermodynamical quantities? We show how the question has been answered affirmatively by

us in [MPCP13] and in the literature listed throughout this section.

First, we overview how non-equilibrium pure quantum systems under the action of typical Hamil-

tonians, for long observation times, can lead to the emergence of thermal equilibrium behavior

49
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[GE15,DKPR15,EFG15], suggesting that pure states can lead to the physics of equilibration.

3.1 Thermalization

The topic of thermalization in closed quantum systems is riddled with paradoxes, perhaps even more

than the problem of entropy increase in classical statistical physics. A quantum equilibrium thermal

state ρβ has a thermodynamical entropy S equal to von Neumann entropy of its density matrix

S[ρβ] = Tr[ρβ logρβ]. (3.2)

It should be reminded that the time evolution for a closed quantum system is unitary. For a pure state it

is determined by |ψt〉= U(0, t) |ψ0〉 (see Section 2.2), with U(0, t) the unitary propagator from time 0

to t. The density matrix evolves according to

ρt = U(0, t) ρ0 U†(0, t). (3.3)

Once a quantum state is prepared, the following happens

1. The von Neumann entropy never increases if the evolution is unitary

St = Tr[ρt log(ρt)] = Tr[(U ρ0 U†)(U logρ0 U†)] = Tr[ρ0 logρ0] = S0. (3.4)

2. Pure states never turn into mixed states.

3. Since the von Neumann entropy is constant, it is thought that the temperature cannot increase in

closed systems.

The paradox is immediate: if it were possible to write the Hamiltonian for a pot of water and a

stove, initially at a temperature T0, then no matter what happens the total entropy of the system does

not increase, even when the water starts boiling [Gra08]. The solution of the paradox is to note that

the entanglement entropy (which is the only quantity measured by the von Neumann entropy) is not

equal to a proper thermodynamic entropy, especially in non-equilibrium situations where the latter is

altogether not defined. Alternative definitions exist [Pol08,Pol11], and we also define an entropy-like

quantity in Chapter 6, in the spirit of Ref. [Deu10,DLS13], namely the entropy density.

So how can the thermal behavior emerge from the evolution of a pure quantum system initially out

of equilibrium? The predictions of classical statistical physics are overwhelmingly confirmed by everyday

experience, meaning that many systems behave as possessing a well-defined temperature.

Conditions necessary for a system to reach thermal equilibrium from an initial non-equilibrium state,

are at least [LPSW10]:

1. Equilibration: all relevant expectation values must be observed to be almost constant after an

initial evolution time

2. Independence of initial state: the microscopical details of the global initial state do not matter

in the equilibrium expectation values of local observables, only a few macroscopic parameters

emerge, e.g. the energy density (or temperature)

3. Thermalization: the expectation values in the equilibrium state equal the predictions of a thermal

ensemble

We shall discuss them after defining the state that exactly describes the long time behavior of quantum

systems.



CHAPTER 3. PURE STATE THERMODYNAMICS 51

3.1.1 Time-averaged ensemble

Let us prepare a pure quantum state |ψ0〉 at time t = 0, and evolve it unitarily in time under the

system Hamiltonian H. This protocol, where the system is driven out of equilibrium via a Hamiltonian

with parameters depending on time through a theta function, it is called a quantum quench. Time

evolution is diagonal in the energy eigenbasis, so it is best expressed in terms of the eigenstates |n〉 and

energies En

|ψ(t)〉= e−iH t |ψ0〉=
∑

n

e−iEn t cn|n〉. (3.5)

Each component acquires a complex phase, weighted by cn = 〈n |ψ0〉. The infinite-time limit |ψ∞〉
does not exist as a wave function: in limt→∞ |ψ(t)〉 the phase of each component keeps oscillating.

However, the time-averaged ensemble can be defined

ρ∞ = lim
T→∞

1
T

∫ T

0

|ψt〉〈ψt | d t (3.6)

which can be calculated exactly. For any finite time t, the instantaneous density matrix decomposes in

|ψt〉〈ψt |=
∑

En=Em

cnc∗m|n〉〈m|+
∑

En 6=Em

cnc∗m|n〉〈m|e
−i(En−Em)t , (3.7)

where the first sum is over all sets of degenerate eigenvalues (including singletons), and the second is

over all combinations of different energies. The latter part
∫∞

0 dt e−i(Em−Em)t → 0 when En 6= Em under

the time average due to dephasing. The time independent part is equal to the diagonal ensemble

ρ∞ = |ψt〉〈ψt |= lim
T→∞

1
T

∫ T

0

|ψt〉〈ψt | d t =
∑

En=Em

cnc∗m|n〉〈m|= ρd . (3.8)

If there is no degeneracy, En = Em =⇒ n= m, the diagonal ensemble is simply the projector over the

eigenstates of the Hamiltonian weighted with the original weight at time t = 0:

ρd =
∑

n

|cn|2 |n〉〈n|. (3.9)

This ensemble retains a macroscopic amount of information about the initial conditions, in D real

numbers |cn|2. However, the information is classical since the quantum off-diagonal terms in Eq. (3.9)

have been averaged out. The time-averaged ensemble has a well–defined nonzero entropy, despite that

the state |ψ(t)〉 is pure. This is the so called diagonal entropy, Sd = −kB

∑

n |cn|2 log |cn|2. Another very

useful measure of the thermalization is the Inverse Participation Ratio (IPR), which is the linear entropy

of the diagonal ensemble, or an effective dimensionality of the problem

Deff(ρd) =
1

Trρ2
d

=
1

∑

|cn|4
. (3.10)

Since the projectors on the single energy states are conserved, as Pn = |n〉〈n| commute with the

Hamiltonian H =
∑D

n=1 En Pn, it is expected that this exponentially large set of operators must retain its

initial expectation values: 〈 Pn(t) 〉= |cn(t)|2 = |cn(0)|2. Under the Principle of Maximum Entropy, the

diagonal ensemble is the least constrained quantum state that conserves all these conserved quantities,

raising the additional question of how can a quantum system thermalize under all these constraints.
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3.1.2 Equilibration

Can the expectation value of an operator A, for all times after an initial waiting period, equal its

time averaged value? The question is answered by the probability of observing any fluctuation

P(|Tr(Aρ(t))− Tr(AρD)|2 > ε). (3.11)

Equilibration holds only for the expectation values of a set of allowable observables. It is easy

to construct a counterexample [Rei08], a quantum operator whose expectation value never reaches

a stationary value: the offdiagonal value of the density matrix in the energy eigenbasis, with ω =
Em − En > 0:

K̂ =
|m〉〈n|
ρm,n(0)

+H.c., (3.12)

has an expectation value

Tr(K̂ ρ(t)) = 2cos(ωt). (3.13)

The operator so constructed is necessarily extremely nonlocal [SKAS14]. For local operators spanning a

system of a few sites, the state of the whole system with L sites can be partitioned over a small subsystem

S with LS sites, and a remaining bath B, with LB such that LS + LB = L. If |NS |< |NB|, the relative size

of the Hilbert spaces is exponentially smaller,

DS

DB
∼ exp(LS − LB)� 1. (3.14)

The disparity in the dimensionality mirrors the situation considered in the foundations of statistical

physics [Rei07]: a small system is coupled to a much larger bath, and the dimensional ratio can be used

to rigorously bound predictions.

The physical reason for this phenomenon has been related to the second law of thermodynamics:

at growing temperatures, the increasing entanglement between the system and the bath is the source

of the many, nearly thermal and random, contributions to the expectation values in small subsystems

[PSW06,RDYO07a].
The density matrix of the reduced system ρS can be shown to almost never differ from its time

average [LPSW10,Sho11,Rei08,Rei10], meaning that the subsystem does equilibrate:

dist(ρS(t), ρS
∞)<

1
2

√

√ DS

Deff
, (3.15)

which is exponential in the size difference. The distance used for the density matrices is the trace

distance, measuring the maximum deviation of any normalized observable between the two states.

Since the bound is tight for the density matrix of the subsystem S, all expectation values of observables

that can be defined on a subsystem S also equilibrate. Thus local observables equilibrate, which means

that it is exponentially (in the system size) unlikely to observe fluctuations from their equilibrium

(time–averaged) values. in Ref. [Rei15b], the fluctuation probability is given as

P( |Tr(Aρ(t))− Tr(Aρd)|2 > ε)< exp[−kεDeff], (3.16)

where k is a collection of constants of order O(1). Smaller systems, such as few-level quantum systems, are

never observed to equilibrate, whereas in mesoscopic quantum systems with D ∼ 107 states, equilibrium

is apparent. The lack of an observable recurrence time is due to the enormous amount of degrees of

freedom, and requires an exponentially complicated set of measurements to be distinguished from true

equilibration [UWE13]. The time necessary to attain equilibration is difficult to bound analytically, but

some progress has been made [SF12,GHT13].
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3.1.3 Independence from initial state

The only conditions to impose on the observables are locality and boundedness. Much stronger

are the bounds on the Hamiltonian and the initial state |ψ0〉. If the system is prepared in a clean

superposition of very different energy eigenstates, e.g. 1p
2
|0〉 + |D〉, the interference pattern in the

observables can be visible at any time.

The bound in Eq. (3.15) requires the effective dimensionality of the initial state Deff to be as large as

possible [RS12]. This implies an overlap with almost all the eigenstates of the Hamiltonian used in the

time evolution. If the states |ψ0〉 are typical, i.e. selected according to a uniform probability measure in

a subspaceH R of the full Hilbert space with dimension DR, the probability [LPSW10] of having a small

effective dimension is bounded by

Pψ0

�

Deff(ψ0)<
DR

4

�

≤ 2exp
�

−c
p

DR

�

, (3.17)

i.e. almost all initial states lead to a time averaged density matrix with very uniform overlap in the

energy eigenbasis, with a constant c ∼ 10−4.

A gedanken counterexample is the following: if an experimentalist prepares the initial state in an

energy eigenstate, then Deff = 1 and the equilibration is impossible. As argued by Reimann [Rei07], a

mole of atoms is described by DS = O(101023
) parameters; even if the experimentalist could determine

the energy with a precision of 10−1022
, thus collapsing the wavefunction to a narrow window of energies,

there would still be Deff ∼ DR = O(101023−1022
) = O(100.9·1023

) energy levels in the distribution, greatly

satisfying the requirement Deff� 1.

Since all relevant quantum observables are local, the precise initial state of the global system |ψ0〉
should not matter, as only the information available in the local reduced density matrix ρS is relevant,

and that operator has contributions averaged over all combinations of states in the total system. The

only observables that govern the expected values after thermalization can be densities defined over

the subsystem: energy density, magnetization density, or other expectation values of local observables

(although the latter are relevant only in the extreme case of integrable systems). The parallel with

classical thermodynamics is evident, as all uncontrolled microscopic degrees of freedom are irrelevant

in the macroscopic description and visible only as constituents of heat and entropy. Only a handful of

macroscopic observables set the behavior of the system.

The reason why the conserved quantities appearing in Eq. (3.9), the projectors Pn = |n〉〈n| on the

eigenstates, do not prevent the equilibration of local observables is that the Pn are nonlocal. As we argued,

their effect on the reduced density matrix of an arbitrary subsystem should be limited. Local fluctuations

would need to be offset exactly by corresponding changes on the whole system. This would violate

locality, an emergent property characterized by a finite maximum speed of propagation of information in

a system with short-ranged interactions, called Lieb-Robinson velocity [BEL14,ES12,LR72,KGE14,Kas15].
The emergent locality is a property of not only 1D quantum systems, leading to a general argument for

the relevance of only the local conserved operators.

The constraints on the Hamiltonian are essentially requirements for the energy operator to be strongly

nondegenerate and irreducible1 over the whole Hilbert space. Technically, this is the nondegenerate gap

condition, known also as the non-resonance condition [SF12]:

Em > En > El > Ek (3.18)

1This excludes the case of integrable systems, whose Hamiltonian can be put in block-diagonal form with respect to local

conserved operators.
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implies Em − En 6= El − Ek, (3.19)

which is a stronger generalization of the non-degeneracy condition, preventing also equal excitation gaps

in the energies, and excludes integrable systems from the rigorous results. It is argued that every typical

Hamiltonian satisfies these requirements: if it does not, it is sufficient to add a Hermitian perturbation

operator ε to the initial H0

Hpert = H0 + ε+ ε
T , (3.20)

where the matrix elements of ε are small, e.g. |εi, j | ∼ 10−8, to satisfy Eq. (3.18). Such a small

perturbation should not influence the observed physics, but it is enough to guarantee equilibration in

the long time limit.

The conditions necessary in practice are somewhat more intricate, requiring that the initial states

have sufficient thermal features, such as extensivity of the entropy [GME11] and wide overlaps in

the energy window [SPR12,BCH11]. Counter-examples have been also provided by [BKL10], making

the often overlooked point that even though relations such as Eq. (3.17) state that the probability of

non-typical (leading to nonequilibrium) states is zero, peculiar initial conditions persisting in finite-size

systems are observable.

3.1.4 Thermalization

The expected value of all observables need not necessarily match those of a thermal ensemble, unless

〈A〉 (t →∞) =
∑

n

|cn|2 〈n |A | n〉=
∑

En∈[Ē−δ/2,Ē+δ/2]

A(En) = Tr(ρMC A). (3.21)

where

ρMC =
1
Z

∑

En∈[Ē−δ/2,Ē+δ/2]

|n〉〈n| (3.22)

is the microcanonical ensemble corresponding to the mean energy Ē, which is the maximum entropy

ensemble for a system with fixed energy in a window of microscopic width δ.

The statement is the essence of the Eigenvalue Thermalization Hypothesis (ETH):

1. The distribution |cn|2 is centered around some average energy Ē, where the width of the distribution

δE is negligible compared to the mean, δE/Ē→ 0 in the thermodynamic limit.

2. The expectation values of any relevant observable across excited eigenstates in the same energy

window [Ē − δ/2, Ē + δ/2] is more or less constant, depending smoothly only on the energy,

A(En)≈ A(E). The expected values of highly–excited energy eigenstates are thus already thermal,

earning ETH its name.

In short, most distributions of energy weights cn resemble a microcanonical distribution, and all reason-

able observables have the expectation values equal to the ones from the microcanonical ensemble. The

statement seems stronger than the preceding sections, invoking only arguments based on typicality, but

the two viewpoints can be smoothly interpolated, by the concept of typicality not only in Hilbert space,

but in the space of operators using Random Matrix Theory (RMT). The perturbation argument used in

Eq. (3.20) is an example of RMT in action, pointing to properties of typical operators.

The statement (1.) is usually justified by supposing that the predictions are performed on an

ensemble (in the sense of Gibbs) of many replicas of the system, experimentally prepared by letting
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them interact weakly with a reservoir to achieve a repeatable initial state, then driven to nonequilibrium

if needed. This is equivalent to the coefficients cn being drawn from a random distribution, which can be

flat in some window [Ē −δ/2, Ē +δ/2]. In an extensive system, density of states in any energy window

is exponentially proportional to the volume [Deu10]. This guarantees that the smoothed distribution

c(Ē) has a support over an exponential number of states, i.e. its fluctuations compared to the mean

vanish, leading to a well defined microcanonical state. Different initial temperatures, if needed, can be

represented by a different average energy density.

The ETH approach using RMT was first developed by Deutsch [Deu10], summarized in Ref. [Rei15a].
Essentially equivalent is the approach of Ref. [GLTZ10], which is a modern statement of the Quantum

Ergodic Theorem by von Neumann from 1929. A generalization making contact with the theory of

quantum typicality, can be found in Ref. [DKPR15], which we follow.

Let us write σ2(Ā) =



|Tr(Aρ(t))− Tr(AρD)|2
�

for the variance of any expectation value. If the

fluctuations of the average energy Ē in the initial state |ψ0〉 are well behaved, i.e. σ2(Ē)' Ē, then the

predictions of RMT are fulfilled in the thermodynamical limit, and

Ā= Tr[ρt A] = Tr(ρd A) = Tr(ρMC A). (3.23)

Since the coefficients cn are random and uncorrelated, the expectation values for the offdiagonal elements



An,m

�

=



c∗mcn 〈n |A | m〉
�

which are supposed to vanish in the diagonal ensemble, satisfy [Per84]




An,m

�

∝
Tr A2

Deff
. (3.24)

The fluctuations σ2(Ā) of the expectation value Ā after the thermalization are bounded (see Eq. 3.16)

by the offdiagonal elements expectation

σ2(Ā)≤max
n6=m




An,m

�

≤
Tr A2

Deff
(3.25)

so the equilibration can also be proven at the level of ETH.

The equality for the expectation value follows from

Ā= Tr[ρd A] =
∑

n

|cn|2 An,n = A(Ē) +
1
2
(δE)2 A′′(Ē) + . . . (3.26)

where the second term depends on the energy fluctuations in the initial state. If the energy distribution

is narrow, which is the only requirement, δE→ 0 and the prediction is fulfilled, as the contributions of

the offdiagonal elements A′′(Ē) are negligible.

3.1.5 Lack of thermalization

Thermalization is a statistical effect, just as in classical physics. Out of equilibrium states evolve

according to the internal microscopical dynamics set by the Hamiltonian. If those states, according

to the fully time-reversible dynamics, enter the High Probability Manifold (HPM) – the equilibrium

subspace [Gra08] of the Hilbert space with measure 1, they will not become nonequilibrium states again

with high probability. The effect is purely entropic, owing to the enormous disparity between the volume

of states in the HPM and the rest. This equilibration, and subsequent thermalization, mechanism can

break down in many cases, some of which we overview below.

1. Integrable systems. The thermalization to a canonical ensemble is impossible due to the macro-

scopic number of local conserved operators, proportional to the volume of the system L. They how-

ever can equilibrate in certain cases to the Generalized Gibbs Ensemble [RDYO07a,GME11,Poz13]



CHAPTER 3. PURE STATE THERMODYNAMICS 56

shown in Eq. (1.76), which is a maximum entropy ensemble conserving all local operators. The

thermalization of driven integrable systems is investigated in Chapter 6.

2. Breaking of ergodicity in Many Body Localized (MBL) systems [Mir00,PKCS15,HNO14,SSB+10,

AES14]. MBL is typical of systems with strong disorder or defects, such as the prototypical result of

Anderson, leading to a weakly-growing (as the logarithm of time, instead of linearly) entanglement

entropy and vanishing Lieb-Robinson velocity. These systems fail to act as their own heat baths

and dc transport becomes impossible. The system has a number, exponential in the volume of the

system, of conserved quantities that are all local, acting only on the typical length scale of the

disorder, breaking the ergodicity and preventing the HPM from existing.

3. Periodically driven systems with MBL in energy space [PPHA15, DP13, DR14]. If the system

is driven by switching the Hamiltonian periodically, the state can be approximated using the

time-averaged evolution operator. Its logarithm can be obtained by a singular Magnus expansion,

giving an effective Hamiltonian that can lead to localization in energy space. The driving protocol

used in this thesis does not belong in this category, as the time-averaged Hamiltonian equals a

chaotic (i.e. ergodic) operator, the Hamiltonian at time t = 0.

4. Pre-thermalization [BBW04,LGK+13,EKW09,KWE11,GKL+12,MK10]. It is a phenomenon that

characterizes perturbed integrable systems, relaxing to a meta-stable state of the GGE type. The

state indistinguishable from a thermal one is only reached after long times. In many cold-atoms

experiments, after what was believed to be a sufficient time, they observed a state differing from

the predictions of the relevant quantum thermal ensemble. Only continuing the experiment (after

suitable upgrades) for longer times lead to the solution of the discrepancy. When a perturbation is

added as per Eq. (3.20), the time needed to observe the effects of the perturbation are inverse to

its strength, leading to a problematic separation of time scales.

3.2 Computational ensembles

We have shown in this Chapter how pure states can be indistinguishable from thermal states. This

allows calculations to be performed on a (set of) wave-function, instead of the density matrix of the

whole system, which for mesoscopic systems has an exceedingly large dimensionality. The convergence

of the expected values to their equilibrium value, often as fast as the exponential size of the Hilbert

space (see Eq. 3.15), allows in some cases the use of a single pure state. High-temperature expectation

values can be computed as efficiently as averages on the ground state, which we first review.

The previous section dealt with the case of a state initially out of equilibrium, reaching an apparent

thermal state that matches the ensemble expectation values, showing that almost any pure state, after

waiting long enough, can be used to calculate otherwise inaccessible thermal predictions. This raises the

question of the optimal choice of states, in order to estimate expectation values in a quantum ensemble,

without having to wait any dephasing time.

We show how instead of using nonequilibrium states, carefully chosen random states can optimally

give equilibrium expectation values already at t = 0; moreover, their time evolved set is useful to

calculate any time-dependent observable at times t > 0.
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3.2.1 Zero temperature methods

Quantum systems at a finite temperature [AFP09] are characterized by a density matrix with

monotonically nonincreasing diagonal elements

ρβ =
1
Z

e−βH =
1
Z

dimH
∑

n=1

e−βEn |n〉〈n| (3.27)

where the sum is over the eigenvalues En and eigenvectors |n〉 of the Hamiltonian in increasing order,

with the partition function Z =
∑

n e−βEn normalizing the trace of the matrix. The ground state of the

system is attained by cooling to zero temperature or equivalently in the β →∞ limit. Supposing the

existence of a unique ground state, which is usually the case away from critical points and in non-glassy

systems, it can be seen that the density matrix selects the ground state. Shifting the energy levels by

−E0 leaves the density matrix invariant, since it changes the weights and the normalization constant,

but allows to take a proper limit since all weights e−β(En−E0) for n> 0 vanish. In this case

lim
β→∞

ρβ = lim
β→∞

1
Z ′

�

|0〉〈0|+
dimH
∑

n=2

e−β(En−E0) |n〉〈n|

�

= |0〉〈0|, (3.28)

the matrix decomposes into the projection onto the pure |0〉 which is the unique ground state of the

system. All thermodynamical averages at zero temperature are just expectation values in the ground state,

considerably simplifying the algebra. The ground state eigenvector can be determined by variational

methods involving constraints relaxation [BH12,Arb12,BV04], or directly from a concrete representation

of the Hamiltonian as a matrix using e.g. the Lanczős method as described in Section 2.1.

Any relevant observable can be obtained as simply as

lim
β→∞

〈A〉β = 〈0 |A | 0〉 . (3.29)

3.2.2 Canonical ensemble

More often than at zero temperature, classical statistical physics deals with systems being able to

exchange energy with an environment, which acts as a bath with a well defined temperature. The

system is weakly coupled with a bath that allows only the exchange of energy, left to thermalize, then

the coupling is adiabatically turned off until at time t = 0, the system remains in the equilibrium state

parametrized by the density matrix from Eq. (3.27).

The simplest nonzero temperature to analyze is the infinite temperature limit, β → 0. In this case

lim
β→0

ρβ =
1
D

D
∑

n=1

|n〉〈n|=
1
D
1, (3.30)

the identity matrix normalized so that Tr
�

ρβ=0

�

= 1. The normalization constant can also be obtained

as the expectation value of the operator 1, at any temperature. The sum over the projectors of all

possible states ofH can be replaced by an expectation value over random states |r〉, a so called Hilbert

space average

1
D
1= E|r〉

�

1
R

R
∑

r=1

|r〉〈 r|

�

with |r〉 ∈ H , (3.31)

where the expectation E|r〉 is taken over a subset of R random vectors {|r〉} inH . Since the average is over

complex subspace of D normalized parameters, it is equivalent to averaging over a 2D− 1 dimensional
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real sphere2. Averages over a huge number of dimensions lead to the phenomenon called concentration

of measure, already encountered in Eq. (3.15): it is a theorem due to Polya [LPSW09, appendix B],
stating that almost all values of functions f (x) defined on such spheres, lie close to their mean f̄ :

Px

�

f (x)> f̄ + ε
�

≤ 2exp

�

−
2D− 1
9π3λ2

f

ε2

�

. (3.32)

This implies that any expectation value in the infinite-temperature limit is effectively sampled by an

average over random states

〈A〉β=0 =
1
D

Tr(A 1) =
1
R

∑

r

〈r |A | r〉 (3.33)

with the usual Monte Carlo scaling in the number of tries O(R−1/2), as shown in Section 2.3.4. The

variance is O(D), so the relative error scales as O(D−1/2), which is almost exponential in the number of

sites of the system.

Any finite temperature can be obtained by a re-weighting of the probability shown in Eq. (3.33), by

using the normalized expectation value of the operator e−β H A, instead of A

〈A〉β = Tr(Aρβ ) =
Tr(A e−βH)
Tr(1 e−βH)

=
Tr(A e−βH 1)
Tr(e−βH 1)

=




A e−βH
�

β=0

〈e−βH 〉β=0
. (3.34)

The symmetric version is even more useful and numerically accurate, by using the cyclical property of

the trace Tr(A e−βH) = Tr(A e−βH/2 e−βH/2) = Tr(e−βH/2 A e−βH/2). The numerator becomes

Tr(A e−βH) = Tr(e−βH/2 A e−βH/2) =
1
R

R
∑

i=1




ri

�

�e−βH/2 Ae−βH/2
�

� ri

�

=
1
R

R
∑

i=1

¬

φ
β
i |A | φ

β
i

¶

, (3.35)

whereas the normalization constant in the denominator of Eq. (3.34) is

Z = Tr
�

e−βH 1
�

=
1
R

R
∑

i=1

¬

φ
β
i |φ

β
i

¶

. (3.36)

We have chosen to index the random states |ri〉, since each of them enters only after a re-weighting

with |φβi 〉 = e−βH/2 |ri〉. The set of vectors {|φβi 〉, i = 1, . . . , R} span a rank-R approximation to the

unnormalized density matrix e−βH ≈
∑R

i=1 |φ
β
i 〉〈φ

β
i |. It is numerically equivalent ensemble of vectors,

reaching easily a precision of 1% with R= 10 for generic systems.

Since the error scales as O(D−1/2R−1/2), for D� 1, already R= 1 might be sufficient. In this case,

a single random vector |r〉 (or equivalently |φ〉), can be enough to approximately represent physical

results. It is a pure state approximation to the canonical ensemble.

The first uses of this approximation date to the works of Jaklič and Prelošek [JP94, JP96, JP00],
where it was dubbed the Finite Temperature Lanczős Method (FTLM), as opposed to the ground state

method mentioned in Section 3.2.1. The name stems from the method3 used to calculate e−βH |r〉,
which was the Lanczős based imaginary-time propagator, discussed in Section 2.1.3. Unfortunately, the

method fell out of fashion in the early 2000s outside the condensed-matter community (Ref. [SSZT12]
is an example of the latter), to be rediscovered in the DMRG community under the name of METTS

(Minimally Entangled Typical Thermal States) in Ref. [SW10], where the vectors φi were instead

calculated by a Suzuki-Trotter approximation, with some notable applications [BEL14]. Independently,

2The real and imaginary parts of the components of any |r〉 are to be taken as independent
3The unsymmetric version Eq. (3.34) was used



CHAPTER 3. PURE STATE THERMODYNAMICS 59

quantum typicality approaches [GMM04] also arrived at the expression (3.34), with later independent

publications [SS13], but for the first time rigorous error bounds in O(D−1/2) were derived and the idea

of approximating a whole ensemble, not only the expectation values, was born.

The dimensionless normalization constant Zβ , also serves as a measure of the effective dimension

Deff = Z of states entering the average. in Ref. [BP03], it is stated that good convergence is only expected

when the number of states as function of the temperature satisfies Zβ � 1. This is in line with the

conclusions of Section 3.1.3, since for purely random states the effective temperature is infinite, and the

canonical expectation value for Zβ=0 is the dimensionality of the subspaceH R ⊆H from where the

random vectors are generated from, giving Deff = DR. Whenever Zβ → 1, the system is effectively at

zero temperature.
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Figure 3.1: Comparison of observables under a single realization |φβ 〉 (R = 1) of the approximate canonical

ensemble, for different system sizes. The system Hamiltonian is typical, i.e. it fulfills the requirements for

thermalization to work. It is a fermionic t−V −W model at half-filling, V = 1.5 and W = 1.0, started at equilibrium

with β = 0.3 and driven with an electrical field F = 0.2. In each panel a different observable is shown: (a) particle

current, (b) zoom of the later times, to show the oscillations of the decaying current, (c) ratio of the particle current

to β , which is expected to be constant for β → 0. The ratio allows the oscillations of the current to be clearly seen,

(d) the instantaneous energy.

All the quantities defined above are easily calculated using the set of vectors |φβi 〉. However, a much

more efficient version, allowing the expectation values to be computed at any temperature, is given by

using the scalar density of states averages obtained by Chebyshev expansions, shown in Section 2.3.5.

We summarize the results using the vectors now, since they are most useful beyond equilibrium.
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1. For all i ∈ {1, . . . , R}

(a) Extract a random vector |ri〉, representing a state at infinite temperature, |φβ=0
i 〉= |ri〉

(b) Re-weight to obtain finite temperature |φβi 〉 = e−βH/2 |φβ=0
i 〉, by Chebyshev or Lanczős

imaginary-time propagators

(c) Compute the expectation value for any set of operators A1, A2, . . . , Ak as Ak =
¬

φ
β
i |Ak | φ

β
i

¶

(d) If higher moments are needed, use e.g.



H2
�

= ‖H|φβi 〉 ‖
2

(e) Compute the normalization Z = ‖ |φβi 〉 ‖
2 =

¬

φ
β
i |φ

β
i

¶

2. Average all contributions to the observables Ak and Z , 〈Ak 〉β = Ak/Z

Step (d) is a necessary variance reduction technique, to make sure that moments of the energy such as

σ2
H(β) =




H2
�

β
− 〈H 〉2β , do not require R2 terms instead of R to achieve reasonable accuracy. In short,

the variance needs to be calculated over the same set of vectors [Bra06].
We are now able to cite the reason why the approximation is so effective at equilibrium and beyond,

following [BG09]. It is required that all physical observables of the system, as stated in Section 3.1.4,

have fluctuations compatible with their mean σ2(A)∼ Ā, moreover moments with order higher than 2

also stay bounded. Then, the Hilbert space average of any observable A, or infinite-temperature average

over random vectors |r〉, leads to an expectation value

Ā= E|r〉[〈r |A | r〉] =
Tr(A)

D
, (3.37)

with variance4

σ2(Ā) = E|r〉
�




r
�

�A− Ā
�

� r
�2�

=
1

D+ 1

�

Tr A2

D
−
�

Tr A
D

�2
�

=
1

D+ 1
(m2 −m2

1), (3.38)

if we denoted by m1 and m2 the first and second moment of A at infinite temperature, respectively. The

variance of the expected values over the Hilbert space thus decreases linearly with the dimension ofH ,

or exponentially in the number of sites. To obtain finite temperature results, the reasoning is applied to

the modified observable A 7→ Ae−βH . The reader is reminded that this is the variance of an expectation

value, which tends to an extremely peaked distribution already for small-sized quantum systems, not

the variance of a measurement, which has the requested scaling properties of any thermal quantity, as

noted in Ref. [DKPR15].

3.2.3 Time evolution

The same subset of vectors |ri〉, can be propagated forward in time with any unitary evolution

operator U(0, t), obtaining an expectation value of A(t)

〈A(t) 〉β = Z−1 1
R

R
∑

i=1

¬

φ
β
i

�

�U(0, t)† A U(0, t)
�

� φ
β
i

¶

=
1
R

R
∑

i=1

¬

φ
β
i (t) |A | φ

β
i (t)

¶

, (3.39)

4Let us remind the reader that σ2(Ā) measures the fluctuations of the expectation value Ā, not of single measurements of A.
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where we have switched to the Schrödinger picture, including the explicit time dependence in the

random state vectors

|φβi (t)〉= U(0, t) |φβi 〉= U(0, t)e−β/2H |ri〉. (3.40)

The last expression reduces to |φβi (t)〉 = e−(i t+β/2)H |ri〉 for the time-independent Schrödinger equation.

The normalization Z is constant for any kind of unitary real-time evolution, no adjustment is necessary

for t > 0.

Unitary operators conserve distances and angles in Hilbert space. In particular, the spread of 〈A(t) 〉β
from the true value stays bounded

σ2[Ā(t)] = O
�

1
D

�

(3.41)

according to [BG09, Eq.(9)], analogously to Eq. (3.38). If the initial states are chosen to approximate

equilibrium values at t = 0 well, they will do so at later times t > 0. The computational cost consists in

having to evolve every vector |ri〉 in both imaginary and real time, and averaging all necessary quantities

over the whole set of vectors and times.

Sites dimH (millions) SpMV Time Time / dimH
20 0.184756 11748 77 416

22 0.705432 11950 365 518

24 2.704156 12351 1500 554

26 10.400600 12554 5750 552

Table 3.1: Scaling of the timings (in seconds) necessary to obtain the data from Fig. 3.1. The times scale

proportionally to the Hilbert space dimension, whereas the number of sparse matrix vector products is weakly

dependent on the system size through the spectral radius.

The setup is necessary to calculate correlation functions in real time, and was already pioneered in

Ref. [JP94]. Correlation functions measure the overlap between a state initially in thermal equilibrium

at time t = 0 and later times t > 0:

C(t) = 〈A(t) A(0) 〉β = Z−1 Tr
�

e−βH/2 U(0, t)† AU(0, t)A e−βH/2
�

=

∑R
i=1

¬

φ
β
i

�

�U(0, t)† A U(0, t)A
�

� φ
β
i

¶

∑R
i=1

¬

φ
β
i |U(0, t)†U(0, t) | φβi

¶

=

∑R
i=1

¬

φ
β
i (t) |A | ϕ

A,β
i (t)

¶

∑R
i=1

¬

φ
β
i |φ

β
i

¶ . (3.42)

We have defined |ϕA,β
i (t)〉 = U(0, t)|ϕA,β

i (0)〉 = U(0, t)A |φβi 〉, noted that 〈φβi |U(0, t)† = 〈φβi (t)|,
and simplified the denominator. The correlation function is then the normalized expectation value

of A between the two time-evolved states |φ〉 and |ϕ〉. This method has been the basis for most of

the studies of high-temperature correlation functions [DWH+12, MWH+10b, MWH+10a, SJ09, KK14,

BHVC09,ZMK+15,KBM12,vSG14,MHWG08,Sch04,PVM13,KBM12,EK08].

3.2.4 Microcanonical ensemble

Statistical physics textbooks tend to present first the microcanonical ensemble, which is the relevant

ensemble for an isolated system at equilibrium, where the energy is fixed at an average value Ē. The more
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general canonical ensemble, in which the energy can fluctuate, is usually derived in the configuration

of a subsystem connected to a bath, where the whole system is described by a microcanonical state.

The predictions of the two ensembles are usually equivalent in the thermodynamical limit, since the

energy distribution in the canonical ensemble becomes infinitely narrow. There are several studies on

the necessary conditions for the equivalence [LL69,Geo95], or on counterexamples [Kas10]. A most

recent and detailed paper for the quantum case [BC15], states that the equivalence always holds for

large enough volumes if the interactions are strictly local, i.e. for lattice Hamiltonians as treated in this

thesis, and the correlation lengths are finite, excluding critical systems.

The microcanonical state is a diagonal, mixed state, represented by the mixture of all energy states

around Ē with a certain width δE

ρMC =
1

DMC

∑

En∈[E−δ/2,E+δ/2]

|n〉〈n|. (3.43)

The maximum entropy principle requires all microstates |n〉 to have an equal probability D−1
MC, which is

the inverse of the number of the states in the selected energy window. As argued in Section 3.1.4, for

practical purposes the weights need not be exactly equal, but if the state ρMC is itself averaged over

different realizations, the weights can just have the same statistical distribution.

The ETH requires that all generic states have a well defined, narrow distribution of energies for

thermalization to happen, and that such a distribution is typical for random states in Hilbert space.

Recalling the statement of the ETH, all excited states of the Hamiltonian give approximately similar

predictions for local observables

〈n |A | n〉 ≈ A(Ē) ∀n : En ∈ [Ē −δ/2, Ē +δ/2]. (3.44)

Choosing any initial state |ψE〉, with a distribution cn = 〈n |ψE〉 centered around Ē, will give a satisfactory

approximation the microcanonical distribution ρMC ≈ |ψE〉〈ψE |. For improved accuracy, the average

can be taken over several realizations of the state |ψE〉, although it was unnecessary in our experience.

Selecting carefully only one pure state to perform averages for t ≥ 0 is motivated by the success

of ETH to describe the thermalization of generic quantum systems. Paraphrasing Landau [LL77], the

density matrix formalism combines the averaging over the initial mixture of pure states with the quantum

mechanical average over superpositions of energy eigenstates; by carefully choosing the latter, a mixture

with only one state can be chosen. Such approximation to the microcanonical ensemble is better

motivated than the canonical case, due to the very broad spread of energy for relatively small systems in

the latter formulation. Choosing a state with a well defined initial energy, with δE/Ē < 1%, is possible

only with a microcanonical formulation. However, if one does not need to have a narrow distribution

of energies, averaging over a few canonical typical states |φβ 〉 can give smoother and better behaved

predictions, but the results are largely equivalent. A comparison is given in Fig. 3.3, where the time

evolved observables an a single microcanonical pure state are compared with the predictions of the

canonical ensemble with R= 10, giving a very reasonable agreement once the system has passed the

initial nonequilibrium transient.

The first quantum microcanonical state approach known to the author was in Ref. [LPE+03], although

later works derived from quantum typicality approaches also appeared [SS12]. The key is to find an

optimal pure microcanonical state, satisfying the requirement that the energy variance is narrow:
�

H − Ē1̂
�2 |ψE〉= σ2

E |ψE〉 (3.45)

The equation above states that the variance σ2
E has a well defined value on the state |ψE〉 at average

energy Ē. The variance operator on the left-hand side of Eq. (3.45) is positive semidefinite on H ,
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Figure 3.2: Distribution of energies in the different ensembles, with the DOS ρ(E) from Eq. (2.37), the canonical

distribution ρ(E)e−βH , and the microcanonical density ρMC(E) from Eq. (3.43). The data is the same as in Fig. 3.1

with β = 0.5 and L = 24. The density of states (dashed line) corresponds to a canonical distribution at infinite

temperature, and the canonical distribution (dotted line) is very broad at any temperature but has noticeable

contributions from the lower-lying energy states where the density is low. The microcanonical distribution (solid

line, non-normalized) is peaked at the mean energy of the canonical ensemble, but its width is only σE = 0.01Ē.

meaning that the search for a minimum of the variance is a well-posed problem. However, the actual

minimum of the variance is not useful, since a wider spread in the energy is required to satisfy Deff� 1,

where Deff (see Eq. 3.10) counts the number of energy states overlapping with |ψE〉.
The operator equation (3.45) is an eigenequation with minimal eigenvalue σ2

E , thus can be most

effectively solved via the Lanczős ground-state method, Alg.(1) in Section 2.1. The convergence to

the ground state of
�

H − Ē1̂
�2

is quite slow, due to the vanishing gap of the operator: the states of the

Hamiltonian are exponentially dense near the middle of the spectrum where the values of Ē are most

common. The gap is exponentially small, so the convergence time inversely increases. Whereas 100

steps are common for excellent convergence to the ground state in gapped systems, after 5000 steps

only a convergence to σ2
E/Ē ∼ 0.001 is achieved. The energy window does not need to be smaller

though, otherwise single energy states would be singled out, so a number of steps below 1000 may be

sufficient. If an exact diagonalization mapping of the spectrum is available, which is only the case for

operators too small for quantum typicality arguments to apply successfully, the microcanonical state can

be constructed explicitly as

|ψE〉= C
D
∑

n=1

exp

�

−
(En − Ē)2

2σ2

�

|n〉, (3.46)

where C is just the normalization factor which depends on the multiplicity of the eigenstates in the

energy window. This explicit construction has been used for benchmarking in Fig. Figure 2.6.

The Lanczős method is equivalent to an extrapolation at infinite imaginary time of the propagator
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Figure 3.3: Comparison of observables under the approximate the canonical ensemble, averaged over R = 10

states, and the single realization microcanonical, marked as “micro”, for different system sizes. The system is an

integrable, metallic fermionic t − V model, V = 1.5, started at an energy corresponding to β = 0.4 and driven

with an electrical field F = 0.2. The integrability of the system serves as a worst-case scenario, to show that even

when the typicality proofs break down, for a finite system the thermal behavior is properly modeled. In each

panel a different observable is shown: (a) particle current, (b) energy current, (c) ratio of the two currents, (d)

instantaneous energy

e−β(H−Ē1)2 applied to a random state, so the distribution of the energy is actually Gaussian centered

around Ē with variance σ2
E . An alternative exists, iterating the operator Emax1 − H on a random

state, which successively lowers the average energy, providing a tool to monitor the temperature of

the microcanonical state, based on the relation ∂ S(E)/∂ E = β , where S(E) is the microcanonical

entropy [Rei15a] defined as S(E) = lnΩ(E), the logarithm of the number of states at energy equal or

lower than E. The approach based on a target Gaussian distribution leads to much finer predictions

close to the thermodynamical results, and it is also favored by the detailed analysis of the alternatives

in Ref. [LPE+03], where the connection is made using Laplace transforms to generate the correct

distributions [PHT85].
The only parameter left free is Ē, which we have set to the average energy at the canonical inverse

temperature β obtained from the thermodynamical equation of state

Ē = 〈H 〉β . (3.47)

The relation has been determined using the methods of Section 2.3.5 in the canonical ensemble, or

using a High Temperature Expansion (HTE), explained in Section 6.2. The initial state |ψE(0)〉 thus
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satisfies

〈ψE |H | ψE〉= Ē, (3.48)



ψE

�

� [H − Ē1]2
�

� ψE

�

= σ2
E . (3.49)

Expectation values of operators closely related to the Hamiltonian, such as the kinetic or potential

energy alone, agree generally closely with the canonical predictions

〈A〉MC = Tr(ρMC A)∼ 〈ψE |A | ψE〉 ≈
1
Z

Tr(e−βH A) (3.50)

if the temperature is chosen from Eq. (3.47) (or using other relations [Rug97, GOM01]), since the

microcanonical state samples the most relevant energy configurations, whereas the contributions from

further areas of the spectrum dephase in the canonical distribution. On the other hand, operators with

wildly differing expectation values on close energy eigenstates have less accurate predictions in the

microcanonical state than using the canonical formalism of Section 3.2.2. In that event, the averaging

over different realizations of the state |ψE〉 must be employed.

The main reason for the use of the microcanonical pure-state ensemble is the simplicity in the time

evolution. Observables at t > 0 need only be calculated with one time-evolved wavefunction

〈A(t) 〉=



ψE

�

�U(0, t)† A U(0, t)
�

� ψE

�

= 〈ψE(t) |A | ψE(t)〉 . (3.51)

The microcanonical state is an approximate eigenvector of the initial Hamiltonian, so

e−iH t |ψE〉= e−iE t |ψE〉, (3.52)

simplifying greatly the expressions for the correlation functions C(t) from Eq. 3.42, if the evolution is

with the time-independent Hamiltonian U(0, t) = e−iH t

C(t) = 〈A(t) A(0) 〉E =



ψE

�

�eiH t A e−iH t A
�

� ψE

�

= eiE t



ψE

�

�A e−iH t A
�

� ψE

�

= eiE t



ψA
�

�e−iH t
�

� ψA
�

= eiE t



ψA (0) |ψA (t)
�

. (3.53)

We have used Eq. (3.52) in the second line, relabeled |ψA〉 = A|ψE〉 in the third, applied the time

evolution in the forth, to rewrite the correlator as a modulated scalar product (in the Loschmidt echo

form [HPK13,SRH14,Zur03]).



Chapter 4

Motivation

The original work presented in this Dissertation concerns the nonequilibrium states of nanoring

structures driven strongly with an electric field. The understanding of realistic thermoelectric devices is

necessary for the improvement of the efficiency of modern energy-generating devices. Realistic regimes

require them to operate at finite power, and thus under a finite field, where the approaches based on LR

may not be sufficient to investigate the system. Those limitations can be overcome going beyond the

equilibrium framework, using the tools of real–time evolution.

The energy-current response is tightly woven to the transport of heat, although the latter can be

defined only in a quasi-equilibrium regime. We only make use of quantum observables that allow

the expectation value to be computed in arbitrary states of the system. Furthermore, we develop a

nonequilibrium analogues of thermodynamical quantities, such as the entropy density, from which the

effects of heating can be deduced.

The effect of conservation laws is investigated in a driven integrable insulator or metal. The

integrability of a system allows for ballistic transport of charge and energy as long as the system is

completely isolated from its environment. On one hand, the existence of conserved quantities could

highly improve the performance of thermoelectrical devices. On the other, an applied field induces

dissipation in the system by breaking the symmetries in a controlled way. These effects cannot be treated

perturbatively, as the limit of no field is singular. The real-time approach can give answers in this case,

and we study both the transport of energy and the effects of the dissipated heat on the system in the

long-time regime.

Chapter 5

The transport under finite field requires the extension of Ohm’s law to the transport of charge

and energy. What is sought here is the generalization of the Linear Response formulated for

the energy current in a closed system, where the leading effect beyond LR is captured by the

increase of the instantaneous energy density. The limits of this quasi-equilibrium approach

are also determined.

The presence of a finite driving modifies the thermoelectrical response of a system, defined

as the ratio of the energy and particle currents R= jE/ jN . At the LR level, R is given by the

ratio of the dc conductivities. The calculation of the transport coefficient σE(ω) in the LR

regime for the large systems considered here required the development of a new algorithm.

Corrections due to the additional presence of a field must be taken into account through

broadening of the response.

66



CHAPTER 4. MOTIVATION 67

In integrable systems the equilibrium transport coefficients develop singularities, making the

prediction of the thermoelectric response an even more daunting task. Integrable systems

oscillate at low fields, breaking the proportionality with F , but the (thermal) response can

be surprisingly well characterized. An analytical bound is sought for integrable metals and

integrable doped Mott insulators.

The results were presented in [CMP14] and [CMP15].

Chapter 6

The understanding of the nonequilibrium thermodynamics of driven systems requires an

alternative to the entropy, especially if the closed system is in a pure state. An entropy-like

quantity can be defined using the subsystems density matrix, confirming the validity of

the second law of thermodynamics for weakly driven (generic and integrable) strongly-

interacting systems.

The effect of the driving on the thermalization of integrable systems and the details of their

long-time local states were open problems. By the criteria exposed in Section 3.1 and 1.4,

they should retain memory of the initial conditions and the different subsectors should be

independent. Applying the tools of RMT to study the systems during driving and relaxation,

we show that the spectrum of the reduced density matrix agrees with predictions of the

Gaussian Unitary Ensemble.

The nature of the energy increase caused by the Joule effect on a closed system can be

two-fold: as heat or as reversible work. We show the former is true, by the spectral analysis

of the density matrix of subsystems. The time evolution is shown to lead to Gibbs local

states with a well defined effective temperature, confirming again the thermalization even

in integrable driven systems.

The results were first published in [MPCP13].

Chapter 7

The quantum model of a thermoelectric couple is built using the concepts of quantum typi-

cality, and the measured distributions are shown to match the high-temperature expressions

for the heating rate and local observables.

We investigate the differences between a model with fully quantum evolution and its

counterpart which relies on the concept of local quasiequilibrium and on the LR theory. We

show genuine nonequilibrium phenomena that arise for longer times due to the heating,

to the equilibration of the thermodynamical fluxes, and due to Bloch oscillations of the

currents and densities.

We also show the dynamical inversion of the Peltier response in a thermocouple built out of

two Mott insulators, which occurs only for sufficient strengths of the applied field.

The surprising result has been shown in [MCP14].



Part II

Results
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Chapter 5

Transport in strongly driven

homogeneous quantum systems

We analyze the transport dynamics of a strongly correlated quantum nano-ring, under external finite-

field inductive driving. The operator observables are carefully defined, their expectation values bounded by

analytical and numerical predictions, even in the case of integrable systems.

In order to push the system out of equilibrium and induce the flow of currents, the ring is threaded

by a time-dependent magnetic field flux φ(t). The dependence on the externally controlled parameter

is incorporated through the Peierls’ phase φ in the Hamiltonian H(φ) from Eq. (1.4), which is reported

below for convenience:

H(φ) =
∑

l

Hl(φ)

Hl =
�

−th eiφ c†
l+1cl +H.c.

�

︸ ︷︷ ︸

Hkin

+V ñl+1ñl +
1
2

W (ñl−1ñl+1 + ñl ñl+2)
︸ ︷︷ ︸

Hpot

, (5.1)

where ñl = nl −
1
2 , nl = c†

l cl , th is the hopping integral, whereas V and W are the repulsive interaction

strengths for particles on the nearest and the next nearest sites, respectively. We have also defined the

kinetic Hkin and potential Hpot parts of the energy.

5.1 Currents and other observables

The aim of studies discussed in the following section is a derivation of the continuity equations

for the particle and energy density for the time–independent Hamiltonian, which in turn lead to the

definition of the current density operators: JN
l and J E

l respectively [MPCP13, ZNP97, MS08]. In the

absence of driving, i.e. for a constant magnetic flux φ, the particle number and the total energy are

conserved, hence one derives the continuity equations which do not contain any source terms. The

total current is defined as the zero-momentum component, or the average over the whole system, of the

current densities

JN =
1
L

∑

l

JN
l and J E =

1
L

∑

l

J E
l . (5.2)
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In the Heisenberg picture the equation of motion for the particle density1 operator ñl

d
dt

ñl +i [ñl , H] = 0 (5.3)

can be compared with the continuity equation d
dt ñl +∇JN

l = 0, defining the corresponding current

density JN
l by

∇JN
l ≡ JN

l+1 − JN
l = i[ñl , H]. (5.4)

The solution of Eq. (5.4) for the Hamiltonian given above is

JN
l = i th exp(iφ) c†

l+1cl +H.c., (5.5)

fulfilling also the relation JN
l = −∂φH/L. In order to determine the energy current the energy density

Hl must be defined. Since H can be split into Hl in many inequivalent ways, the energy current operator

is not uniquely defined either. In Eq. (5.1) we take Hl which has support symmetric with respect to the

bond between sites l and l + 1. Then, similarly to Eq. (5.4), one defines the energy current through the

continuity equation as

d
dt

Hl + i[Hl , H] =
d
dt

Hl + J E
l+1 − J E

l = 0 (5.6)

The calculations are straightforward for the translationally invariant case which we will use for the

driven homogeneous system in this chapter, so we reverse the derivation for the general case. The

spatially–averaged current was already given in Eq. (1.36),

J E =
1
L

∑

l

(−t2
h)[i e2iφ c†

l+1cl−1 +H.c.]

+
1
L

∑

l

JN
l

�

3W
2
(ñl+3 + ñl−2) +

2V −W
2

(ñl+2 + ñl−1)
�

. (5.7)

In the LR regime the currents can be equivalently derived from the polarization operators [Sha09,LG03,

PK03].

5.1.1 Derivation of the energy current for inhomogeneous systems

Let us now allow site–dependent interactions V → Vl W →Wl as well as on-site energies εl . This is

the form needed for the thermocouple setup in Chapter 7. The energy density takes the form:

Hl = H tV
l,l+1 +

1
2

HW
l−1,l+1 +

1
2

HW
l,l+2 (5.8)

H tV
l,l+1 =

�

−th eiφ c†
l+1cl +H.c.

�

+ Vl ñl ñl+1 +
1
2
εl ñl +

1
2
εl+1 ñl+1

HW
l−1,l+1 =Wl−1 ñl−1 ñl+1 (5.9)

This form of the local energy density has a support on sites l − 1 through l + 2, as seen on Fig. 5.1. We

look for the PH-symmetric form of J E , using only the symmetrized number operators ñ, motivated by

requiring a property of J E: in homogeneous integrable systems (W = 0), J E in this form fulfills

[J E , H] = 0, (5.10)

i.e. it is a constant of motion and



J E
�

(t) = const.

1The derivation is identical for the non PH-symmetrized operator nl = ñl +
1
2



CHAPTER 5. TRANSPORT IN STRONGLY DRIVEN HOMOGENEOUS QUANTUM SYSTEMS 71

Figure 5.1: Symmetric support of the three parts of the Hamiltonian, compared to the total support.

The partition in 3 distinct terms has been made also to ease the calculation of the commutators. The

case of local dependence of the hopping parameter th does not need to be separately considered, it is

sufficient to perform a transformation th 7→ (th)l in equations (5.5)-(5.7).

From Eq. (5.6) it is evident that we need to compute the commutator of Hl with H and break the

term J E
l+1 − J E

l into distinct contributions to the energy current

d
d t

Hl =i [H, Hl] = i [
∑

j H j , Hl] (5.11)

=i [Hl−3 +Hl−2 +Hl−1 +Hl +Hl+1 +Hl+2 +Hl+3, Hl] (5.12)

since all terms with |l− j| ≥ 4 share no common operators and commute. The task is complicated by the

interplay of the interaction beyond nearest neighbors and the locality of the definition of ∇J E
l . Writing

explicitly the values for all Hl ,

d
d t

Hl =− i [H tV
l,l+1 +

1
2

HW
l−1,l+1 +

1
2

HW
l,l+2 ,

+H tV
l−3,l−2 +H tV

l−2,l−1 +H tV
l−1,l +H tV

l+1,l+2

+H tV
l+2,l+3 +H tV

l+3,i+4 +
1
2

HW
l−4,l−2 +HW

l−3,l−1

+
1
2

HW
l−2,l +

1
2

HW
l−1,l+1 +

1
2

HW
l,l+2 +HW

l+1,l+3] (5.13)

and expanding the big commutator, one obtains two nonzero terms involving only H tV :

�

H tV
l,l+1, H tV

l−1,l

�

,
�

H tV
l,l+1, H tV

l+1,l+2

�

. (5.14)

All terms involving only HW commute, leaving 12 nonzero mixed terms:

2
1
2

�

H tV
l,l+1, HW

l−2,l

�

, 2
1
2

�

H tV
l,l+1, HW

l+1,l+3

�

,

1
2

�

H tV
l,l+1, HW

l−1,l+1

�

,
1
2

�

H tV
l,l+1, HW

l,l+2

�

,
1
2

�

HW
l−1,l+1, H tV

l−2,l−1

�

,

1
2

�

HW
l−1,l+1, H tV

l−1,l

�

,
1
2

�

HW
l−1,l+1, H tV

l+1,l+2

�

,
1
2

�

HW
l,l+2, H tV

l−1,l

�

,

1
2

�

HW
l,l+2, H tV

l+1,l+2

�

,
1
2

�

HW
l,l+2, H tV

l+2,l+3

�

,

where the first two terms are to be counted twice in order to pair each commutator uniquely. Before

calculating the explicit values for the above operators, it is useful to separate the contributions to J E
l in

Eq. (5.6) from J E
l+1, leaving only 14/7= 2 terms to expand.

The structure of Eq. (5.14) allows one to immediately recognize their sum as a difference between

operators defined on two contiguous sites

i
�

H tV
l,l+1, H tV

l+1,l+2

�

+ i
�

H tV
l,l+1, H tV

l−1,l

�

=
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i
�

H tV
l,l+1, H tV

l+1,l+2

�

− i
�

H tV
l−1,l , H tV

l,l+1

�

=

J Ea
l+1 − J Ea

l (5.15)

we thus define the first current J Ea
l and look for a similar pattern, which holds for 5 of the 7 pairs. The

remaining ones encode a difference between second neighbors.

i
1
2

�

HW
l,l+2, H tV

l+2,l+3

�

+ i
1
2

�

H tV
l,l+1, HW

l−2,l

�

=

i
1
2

�

HW
l,l+2, H tV

l+2,l+3

�

− i
1
2

�

HW
l−2,l , H tV

l,l+1

�

=

J̄ E
l+2 − J̄ E

l

The double difference needs to be interpreted as arising from a partial cancellation:

J̄ E
l+2 − J̄ E

l = (J̄
E
l+2 + J̄ E

l+1)− (J̄
E
l+1 + J̄ E

l ),

and the contribution to the current for site l must be interpreted as

J
E f

l = J̄ E
l+1 + J̄ E

l = i
1
2

�

HW
l−1,l+1, H tV

l+1,l+2

�

+ i
1
2

�

HW
l−2,l , H tV

l,l+1

�

The full list of currents contributing to J E
l is:

J Ea
l = i

�

H tV
l−1,l , H tV

l,l+1

�

J Eb
l =

1
2

i
�

H tV
l−1,l , HW

l−1,l+1

�

J Ec
l =

1
2

i
�

H tV
l−1,l , HW

l,l+2

�

J Ed
l =

1
2

i
�

HW
l−2,l , H tV

l,l+1

�

J Ee
l =

1
2

i
�

HW
l−1,l+1, H tV

l,l+1

�

J
E f

l =
1
2

i
�

H tV
l−2,l−1, HW

l−1,l+1

�

+
1
2

i
�

H tV
l−1,l , HW

l,l+2

�

J
Eg

l =
1
2

i
�

HW
l−2,l , H tV

l,l+1

�

+
1
2

i
�

HW
l−1,l+1, H tV

l+1,l+2

�

The operators thus defined are automatically Hermitian, since they are the commutator of two Hermitian

operators multiplied by i. The commutators are straightforward to calculate, and follow the pattern of an

expression involving the number operators ñl and the particle current defined in Eq. (5.5). The current

term from Eq. (5.15) deviates from the rule and includes a hopping term between second neighbors.

We summarize all the contributions in their full functional form, since they cannot be further simplified:

J Ea
l = −t2

h

�

ie2iφc†
l+1cl−1 +H.c.

�

+
�

ñl+1Vl +
εl

2

�

JN
l,l−1 +

�

ñl−1Vl−1 +
εl

2

�

JN
l+1,l

J Eb
l = −

1
2

ñl+1Wl−1 JN
l,l−1

J Ec
l =

1
2

ñl+2Wl JN
l,l−1

J Ed
l =

1
2

ñl−2Wl−2 JN
l+1,l

J Ee
l = −

1
2

ñl−1Wl−1 JN
l+1,l
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J
E f

l =
1
2

�

ñl+1Wl−1 JN
l−1,l−2 + ñl+2Wl JN

l,l−1

�

J
Eg

l =
1
2

�

ñl−2Wl−2 JN
l+1,l + ñl−1Wl−1 JN

l+2,l+1

�

J E
l = J Ea

l + J Eb
l + . . .+ J

Eg

l (5.16)

We have used the shorthand JN
l,l+1 = i th exp(iφ) c†

l+1cl + H.c. For a homogeneous, translationally

invariant system, the average current J E = 1
L

∑

l,i J Ei
l reduces to Eq. (5.7), with an additional (−ε JN

l+1,l)
contribution due to a shift of the energy by ε.

5.1.2 Continuity equation with driving

When the time-dependent magnetic field is varied, according to the linear law φ(t) = −F t, a

constant EM force is induced in the closed loop

FEM(t) = −
∂ φ(t)
∂ t

= F. (5.17)

All the operators previously defined depend explicitly on the time, through the Peierls’ gauge phases in

the hopping terms. The only strictly conserved operator is the number of particles N , so the continuity

equation (5.4) defining the particle current JN is invariant.

The Hamiltonian is not conserved in this case, its expectation value in the Schrödinger picture on an

arbitrary state E = 〈H 〉= Tr [H(t)ρ(t)] varies in time according to

Ė =
d
d t
〈H(t) 〉= i 〈 [H(t), H(t)] 〉+

∂

∂ t
〈H(t) 〉=




Ḣ(t)
�

, (5.18)

where the partial time derivative acts on φ(t) in the Hamiltonian definition Eq. (5.8). Remembering

that ∂φH = −L JN and φ̇ = −F ,

d
d t
〈H(t) 〉=




Ḣ(t)
�

=
­

∂ H(φ)
∂ φ

φ̇

·

= F L



JN
�

. (5.19)

This is the expression for the expected value of the Joule heating in which energy is produced according

to the known formula Ė = J F2, derived in a purely quantum setting. Thus, the average energy increases

due to frictional effects3, which counter the flow of the current. This is an effect going beyond the Linear

Response (LR) formalism, since the current response is roughly proportional to the applied field F at

least at short times, leading to a heating Ė∝ F2.

The Joule effect is a local source of energy, under the form of heat, which provides a right-hand side

to the operator continuity equation for the energy density

d
d t

Hl(t) +∇J E
l (t) = F JN

l , (5.20)

raising the question if the definition of the energy current must be modified in presence of driving to

accommodate this part into a definition of J̄ E that restores the form of Eq. (5.6)

d
d t

Hl(t) +∇J̄ E
l (t) = 0.

2Power equals current times voltage difference, in words.
3They are present also in integrable systems driven with a finite field.
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However, the equation above implies the conservation of energy

d
d t

H(t) =
∑

l

d
d t

Hl(t) = −
∑

l

∇J̄ E
l (t) = 0, (5.21)

since
∑

l J̄ E
l+1 − J̄ E

l = 0 due to the translational symmetry of the system. Thus, the correct definition is

given in Eq. (5.20).

Open systems: The continuity equation can be derived also for the evolution of the density matrix

ρ(t) of the driven system is modeled by a Lindblad-Liouville equation [Dal14,BP07,AL06] where the

effect of the environment are included in the dissipators Ln acting on the system. The equation of

motion for ρ(t) reads

ρ̇(t) = −i[H,ρ(t)] +
∑

n

�

2Lnρ(t)L
†
n − L† Lρ(t)− LL†ρ(t)

�

. (5.22)

The evolution of expectation of the local energy density 〈Hl(t) 〉 (t) = Tr (Hl(t)ρ(t)) has an additional

contribution due to the action of the dissipators L on the system, which potentially increase the local

density of energy

d
d t
〈Hl(t) 〉 (t) +∇




J E
l

�

= F



JN
l

�

+



2L† Hl L −Hl L† L − L† L Hl

�

. (5.23)

If [L, Hl] = 0, then the equation is formally the same as Eq. (5.20). The explicit time dependence of

Ḣl = F JN
l enters through the first source term. It should be noted that the dissipator term acts through

the Hermitian conjugate on Hl , compared to Eq. (5.22).

5.1.3 Short-time behavior

To avoid redundancy, expressions symmetric in JN and J E are derived for both using the symbol JN(E).

Moreover, we denote the expectation value of operators using the lower-case version jN(E) =



JN(E)
�

.

The first LR result is the derivation of the expectation values of the currents for t → 0. Their

expectation value in an arbitrary equilibrium state at t = 0 is zero, due to the time invariance of the

initial equilibrium state

Tr
�

JN (0)ρ(0)
�

= Tr
�

J E(0)ρ(0)
�

= 0. (5.24)

In the following simulations, we have chosen the pure microcanonical ensemble explained in Section

3.2.4. The state ρ(t) = |ψE(t)〉〈ψE(t)| is evolved according to the Time Dependent Schrödinger

equation (TDSE) using the algorithm from Section 2.2.

The derivatives of the current operators τN = −〈∂φJN 〉 and τE = −〈∂φJ E〉 are generalized stress

coefficients (tensors in anisotropic systems, similar to kinetic energies in the case considered below)

determining the short-time LR to the flux change

τN =
th

L

∑

l

�

eiφ c†
l+1 cl +H. c.

�

= −
Hkin

L
(5.25)

τE =
t2
h

L

∑

l

¦

[e2iφ c†
l+1 cl−1 +H.c.] +

τN
l

2

�

3W (ñl+3 + ñl−2) + (2V −W )(ñl+2 + ñl−1)
�

©

. (5.26)

The local stress coefficient τN
l has been introduced in analogy to the JN

l term in Eq. (5.7).

Shortly after turning on the electric field, the expectation values



JN(E)
�

can be easily determined from

the equations of motion [MP10]

d
d t

Tr
�

JN (t)ρ(t)
�

t=0 = Tr
�

J̇N (0)ρ(0)
�

+ Tr
�

JN (0)ρ̇(0)
�
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Figure 5.2: Initial slope of the currents, in a driven system with V = 3, W = 1, and field F = 0.2. The predictions

are according to Eq. (5.29)

d
d t

Tr
�

JN (t)ρ(t)
�

t=0 = −



τN(E)
�

φ̇ + i Tr
�

JN(E)(0) [H,ρ(0)]
�

= −



τN(E)
�

φ̇ + i



[H, JN(E)]
�

. (5.27)

In order to obtain the slope, the averages are taken with respect to the initial state ρ(0), which commutes

with the Hamiltonian in all cases considered: in the canonical ρ = e−βH and the microcanonical

(H − 1Ē)2|ψE〉= σ2
E |ψE〉. Thus, in any equilibrium state the commutator in the last line vanishes

Tr
�

H JN(E)ρ(0)− JN(E) H ρ(0)
�

= Tr
�

JN(E)ρ(0)H − JN(E) H ρ(0)
�

= 0. (5.28)

The short–time dependence

d
d t

jN(E)(t) = −τN(E)φ̇ = τN(E) F (5.29)

is shown in Fig. 5.2. These estimates fall short for longer times, since the current cannot grow arbitrarily

large in a tight-binding system, where all operators are finite and thus bounded. The long–time, which

includes contributions from the non-negligible second term of Eq. (5.27), will be the topic of the rest of

the chapter.

5.2 Drude weight after a quench

In integrable systems, the conductivity σN (ω) is a complex quantity, formed by a regular and

a singular component. As explained in Section 1.4, the singular part is delta-valued with strength

DN , called the Drude weight. The long-time expectation value of the current after a quench is thus

proportional to DN , calculated in the relevant initial state. The most reliable and simple way to obtain

the Drude weight is to perform a quench and analyze the long-time behavior of the current. Conversely,

the LR based approach of the previous section becomes less reliable when applied to integrable systems.

At t = 0 we quench the flux φ(t) =∆φθ(t) inducing an electric field F(t) = −∆φδ(t). For this

to be consistent with the LR regime, ∆φ � 1. To the first order in ∆φ the time–dependent particle
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Figure 5.3: Results for quenches in a system with V = 1.5, L = 24, N = 10 in the microcanonical state corresponding

to β = 0.4. The phase is changed by an amount ∆φ, as in Eq. (1.70), and the current monitored in time. (a) The

ratio of the peak to long-time currents, described by Eq. (5.34). The ratio is found to be independent of the phase

quench even for large values of ∆φ. (b) The initial current depending on the instantaneous phase change. The

current expectation value differs from the LR value (5.29) for large values of ∆φ. The ansatz tN sin(∆φ) recovers

the correct functional form, allowing a very accurate determination of tN is required.

current reads

jN (t)= −τN ∆φ − i L

∫ t

0

〈[JN (t ′), JN (t)]〉∆φ dt ′, (5.30)

which gives the peak value jN (t → 0+) = −τN∆φ since the integrand is smooth. The real-time LR

current is given by

jN (t) = −
1

2π

∫ ∞

−∞
dω F(ω)σN (ω)e−iω+ t (5.31)

where F(ω) = −∆φ, and σN is the complex conductivity. The regular part of σN is smooth and gives

no contribution to jN (t) for t →∞, as it averages to zero due to the Riemann-Lebesgue lemma

lim
t→∞

∫ ∞

−∞
σN

reg(ω) e−iωt dω= 0. (5.32)

With the complex singular part σN
sing(ω) =

2iDN

ω+i0+ , the current after the quench stabilizes to

jN (t →∞)=−
∫ ∞

−∞

∆φ

2π
2iDN

ω+ i0+
e−iωt dω

Res
= −2DN∆φ. (5.33)

We have calculated the ratio of the peak to long time currents also for finite ∆φ and estimate the ratio

of the Drude weight intervening in the quench to the sum-rule expectation value:

jN (t →∞)
jN (t → 0+)

=
2DN

quench

τN
, (5.34)

which is needed later. The quench protocol provides the fastest way to numerically compute the Drude

weight in an arbitrary, canonical or microcanonical, initial state, to high accuracy as shown in Fig. 5.3.
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5.3 Generalized Linear Response in a driven quantum system

Once we switch on the electrical field F(t) = const> 0, the system goes into a nonequilibrium state.

The effect of the field is the generation of currents continuously flowing through the ring. The naive

expectation would be a steady flow of current through the system, set by the intrinsic conductance,

in accordance to the LR formalism. A steady dc current naturally corresponds to the zero-frequency

(ω → 0) component of the current response jN(E)(ω), which is the long-time limit of the real-time

response

lim
t→∞

jN(E)(t) = lim
ω→0

jN(E)(ω), (5.35)

where the limit is understood to hold for properly averaged values, since the zero-frequency component

is the integral average of the real-time signal. As we have shown, the steady-state response at zero

frequency in the LR regime is connected to the real part of the relevant transport coefficient4

jN (ω= 0) = σN (ω= 0) F and jE(ω= 0) = σE(ω= 0) F, (5.36)

proportionally to the external applied field. Plotting jN (t)/F and jE(t)/F in Fig. 5.4 shatters this

expectation: there is no steady–state response for closed quantum systems. We will now proceed to

show how to derive a generalized Linear Response in this setting.

The energy is not constant in a driven quantum system with finite F > 0. The instantaneous energy,

given by the expectation value of the time-dependent Hamiltonian in the time-evolved state, is growing

in time according to Eq. (5.19)

Ė(t) = L F jN (t), (5.37)

where E(t) and jN (t) denote the average value of the energy and particle current respectively, as

explained before. In thermal equilibrium, the temperature and the energy are closely connected, by the

thermodynamical equations (2.40) or the equivalent (3.34) of the form

E(β) = 〈H 〉β = f [β]. (5.38)

If the rate of heating, set by the external field F , is not too high, there is a chance for a redistribution

of the energy across all degrees of freedom of the system under the form of heat. We call this regime

Local Quasi Equilibrium (LQE). We define an effective, time-dependent temperature βeff set by the

instantaneous energy of the system

βeff(t) = f −1[E(t)]. (5.39)

We will prove in Chapter 6 that indeed the energy increase is due to heating, by showing that the reduced

density matrix of any subsystem is thermal at the temperature βeff(t).
The effective temperature increase is due to the closeness of the system, which prevents a transfer of

the excess heat to an external environment. The increase of the internal energy in a quasistatic process,

lacking any work to be done by the system, goes into entropy production, according to the combined

first two laws of thermodynamics

T dS = dE −δW = dE when δW = 0. (5.40)

In Section 2.4, we have carefully analyzed the equilibrium conductivity of a generic quantum system,

4Generalizing the conductivity also for the case of jE
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Figure 5.4: Expectation values of the time-dependent conductivities, i.e. the currents jN and jE in a L = 26, N =

11, V = 1.5, W = 1.0 system, divided by the inducing field F , for different values of the external driving field. (a)

and (b) show the currents divided by the field as a function of time, which leads to an apparent wildly different value

of the conductivities. (c) and (d) the same data is plotted as a function of the time-dependent inverse temperature

βeff(t). The evolution starts at β = 0.3 and proceeds towards β = 0, where the system response converges to a

universal value of the conductivity, given by equation (5.41).

defined in the LR limit of the external field F → 0. The transport coefficient σN(E) depends strongly on

the inverse temperature of the system, through the explicit β parameter in Eq. (2.78), and implicitly

through the state |ψE(β)〉 in Eq. (2.79). The effective increase in the temperature is reflected by the

conductivity σN and σE , which are not functions of the frequency alone, but also of the effective

temperature. The correct generalized response depends on the time through the instantaneous energy

jN (t) = σN (βeff(t)) F and jE(t) = σE(βeff(t)) F, (5.41)

where we denote byσN(E)(β) the dc (zero-frequency) component at the effective temperature. The proper

functional form in the time domain involves a convolution in the form jN(E)(t) =
∫ t

0 σ
N(E)(t− t ′)F(t ′) dt ′

as done in Ref. [MP10], but we analyze only the long-time behavior. From Eq. (2.78) the main

contribution to the temperature dependence can be isolated in the exponential, which can be expanded

for small β in series

1− e−βω

ω
≈ β =⇒ σN(E)

reg (ω)≈ L β Im C>N(E)(ω). (5.42)

The correlation–function dependence on |ψE(β)〉 is much weaker for the dc component (ω= 0), so the

main contribution of the temperature is through the β factor in (5.42). Plotting the currents dependence
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as a function of time, as in Fig. 5.4(a-b) does not show the clear existence of the linear relation (5.41),

whereas a plot as a function of βeff(t) in Fig. 5.4(c-d) allows us to define a generalized Linear Response

for weakly-driven generic quantum systems.

5.4 Current ratios in generic systems

We study the ratio of the expectation values of the currents

R(t) =
jE(t)
jN (t)

, (5.43)

in systems that are generic, i.e. non-integrable. The ratio measures the coupling of the charge and

energy transport in the ring, as explained in Section 1.5.1. When the system is driven, the currents

initially increase at a rate set by the respective operator derivatives according to Eq. (5.29), hence the

short–time ratio of the energy and particle currents

R(t → 0+) =
τE

τN
, (5.44)

is field–independent and always consistent with the LR theory [LG03,ZP05]. In tight-binding model,

where the system volume is finite and the energy levels are discrete and bounded, the expectation values

of all operators are also bounded. If the current in a dc response were constant, the steady increase in the

energy produced by the Joule effect (see Eq. 5.19) would imply a constant growth of the energy, which

is impossible due to the upper bound of the energy spectrum. Furthermore, the infinite temperature

state is a fixed point of an arbitrary unitary time evolution

ρβ=0,t = U(t, 0)
�

1
D
1
�

U(t, 0)† = ρβ=0, (5.45)

thus it is not possible to raise the energy of a system by driving, once it reaches the local equilibrium

temperature β = 0 at the corresponding infinite-temperature energy E∞ = D−1 Tr[H].
We have shown how the long-time dependence can be reconciled with the LR expectation by taking

into account heating effects in Section 5.3. The ratio of the currents provides a natural way to take into

account the heating, since for β → 0, the thermal effects cancel out, and R(t →∞) is well-defined and

finite

R(t →∞) =
σE(ω→ 0,β → 0)
σN (ω→ 0,β → 0)

=
C>E (ω→ 0, E→ E∞)

C>N (ω→ 0, E→ E∞)
, (5.46)

with the effects of the external field F and the biggest temperature dependence, the β factor in σ,

canceling exactly. A limiting procedure in necessary owing to the fact that each of the quantities is

strictly zero in the β = 0 limit, which is attained by choosing the infinite-temperature energy E∞ in

the microcanonical ensemble in Eq. (2.79). Thus, the calculations are performed slightly below E∞, or

alternatively at the average instantaneous temperature β(t) to predict a ratio curve.

In order to robustly estimate the time-dependent R(t) in the long-time limit, we resort to least-squares

fitting of jE against jN for long times t > t0 ' 50, determined by

d
dR

∑

i

�

jE(t i)− R jN (t i)
�2
= 0, (5.47)

which does not suffer from numerical instabilities in the regime where both the currents tend to zero, due

to the temperature increase. It can be seen in Fig. 5.5(a) that in the limit of F → 0 the LR expectation
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Figure 5.5: Ratio of currents for a generic driven system, with L = 24, N = 10, V = 3 and W = 1 in the first panel.

(a) Time dependent ratio R(t) as a function of the instantaneous energy E(t)− E∞, so the zero value corresponds

to infinite temperature. The various curves correspond to different driving fields F . R(0) is at the value τE/τN

evaluated in the initial state. The LR line is the prediction of Eq. (5.46), calculated close to β = 0. (b) Estimated

R(t →∞) as a function of the integrability-breaking interaction W . The value W = 0 corresponds to an integrable

system where the LR prediction breaks down. The LR value is calculated as before.

can be reliably recovered, proving that the extrapolation of the response of a finitely-driven quantum

system is well-defined and convergent. The tiny oscillations of currents around their average values

originate from the finiteness of the system simulated and the use of a single initial state. However small

these oscillations are, they eventually dominate when the system approaches β → 0 and the smooth

components of the currents vanish. Then, the numerical results for R(t) being the ratio of two vanishing

quantities unavoidably becomes noisy (see Fig. 5.5(a)). These oscillations have no physical meaning

and can be reduced by either increasing the system size or by averaging over many initial states.

On the other hand, in the case where W → 0, the LR response is poorly defined due to the delta-

like behavior of σN(E)(ω). At the same time, the independence of the expectation values from the

microscopical initial state and the (local-)equilibration in time break down at the onset of integrability.

Thus, even the time-dependent data and the fitting through Eq. (5.47) develops singularities, as we

show in the remainder of the chapter.

5.5 Strong–field Bloch oscillations

Another source for the break-down of the time evolution method used to obtain R(t) in driven

quantum systems, is the appearance of Bloch oscillations for the strongly–driven case. This is a universal

feature in lattice models, which has been proven in the real-time domain in a diverse set of microscopic

Hamiltonians [BK03], in particular for the Falicov–Kimball model on infinite–dimensional lattice [Fre08],
previously for this model of one–dimensional interacting spinless fermions [MP10], for the infinite–

dimensional Hubbard model [EW11],the one–dimensional extended Hubbard model [ECP14]. They

have been experimentally observed in a semiconductor superlattice [FLS+92], cold atoms [BPR+96], and

kicked quantum rotor molecules [FKAB15,FA14]. All tight-binding quantum systems undergo the Bloch

oscillations if the driving field is sufficiently strong, a phenomena which is due to the phase oscillation
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in the phase–dependent part of the operators. We briefly review its origin and the consequences. Here

we choose the arguments which apply not only to the particle currents but also to the energy currents.

As argued earlier in Section 5.1, the density of particle and energy currents can be found from

continuity relations. While the explicit solution of these equations is clearly model dependent, the

current operators consist of terms which share a common structure. In the case of one–dimensional

systems, one expects the following general structure of the particle and the energy currents (in the

Schrödinger picture):

Jk(t) =
∑

α

Jαk (t),

Jαk (t) = [i ei(b−a)F t c†
k+ack−b + h.c.] f (ñk, ñk±1, ñk±2, . . .),

(5.48)

where f is a certain function of the particle–number operators which is independent of the magnetic flux

φ. Various contributions (labeled by α) may involve different functions f and hopping terms (described

by a and b). It is convenient to introduce generalized auxiliary stress-tensor operators generalizing

equations (5.25-5.26), which have the form of a correlated-hopping energy density

ταk (t) = [ei(b−a)F t c†
k+ack−b + h.c.] f (ñk, ñk±1, ñk±2, . . .).

(5.49)

In equilibrium 〈Jαk 〉 vanishes, while its operator derivative 〈ταk 〉 is in general non-zero. Considering the

evolution in the time–window (t0, t) one finds the following identity




ψ(t)
�

� Jαk (t)
�

� ψ(t)
�

= cos[F(t − t0)(b− a)]



ψ(t)
�

� Jαk (t0)
�

� ψ(t)
�

+ sin[F(t − t0)(b− a)]



ψ(t)
�

�ταk (t0)
�

� ψ(t)
�

. (5.50)

The energy spectrum of the tight–binding models is bounded from above hence changes of the matrix

elements on the RHS of Eq. (5.50) cannot be arbitrary fast. In particular one does not expect significant

changes of these matrix elements on a time scale that is much shorter than the relaxation time after

instantaneous quenches. It means that one can always find a sufficiently short time window (t0, t) and

sufficiently strong F that the time–dependence of



ψ(t)
�

� Jαk (t0)
�

� ψ(t)
�

is governed by the oscillating

functions cos[F(t − t0)(b− a)] and sin[F(t − t0)(b− a)].
To summarize this discussion we note that under external driving, the current operators explicitly

depend on time also in the Schrödinger picture. For sufficiently strong driving this dependence prevails,

leading to the Bloch oscillations of the particle and energy currents, which should be generally expected

for tight–binding models. The extension of the above reasoning to the case of spinful fermions and

multidimensional systems is straightforward.

In the context of our model, the generalized currents are the ones corresponding from JN and from

the two contributions (as shown in Eq. 1.36 and on the different lines in Eq. 5.7) of J E , labeled J E1 and

J E2 for clarity. The phase difference in J E2 is the same as JN , with (b− a) = 1. On the other hand, the

two-site hopping in J E1 (and the corresponding τE1 ) generates a term with a phase proportional to e2iF t .

The latter term cannot be in phase with JN , precluding a coherent oscillation of the two currents. Due

to an exact doubling of the frequency of their oscillations the currents form a damped Lissajous figures

in the parametric plane ( jE , jN ) as shown in Fig. 5.6.

The strong–field BO are seen when the driving field F is much stronger than the interaction even for

interacting insulators with V ≥ 3. In general, the strong–field BO irreparably break the equivalence
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Figure 5.6: Plots of the currents for systems displaying strong Bloch oscillations. (a) Plot of the currents for a

system of free fermions with V = 0. (b) Parametric plot of the currents for the free fermion system, showing the

doubling of the frequency of jE1 as a Lissajous figure. (c) Strongly-interacting doped insulator with V = 3, W = 1,

under strong field F = 8.0. The beat pattern in the currents is the same as found in Ref. [Fre08] (d) Parametric plot

of the data presented in (c), showing a deformed Lissajous figure analogous to the one in (b).

between the instantaneous energy and the effective temperature. When the currents oscillate, the system

cannot be in the local equilibrium regime, since the energy becomes a non-monotonic function of time.

The understanding of Eq. (5.19) as a source of heat due to Joule effect also needs to be abandoned,

since heat cannot be properly understood in a non-equilibrium setting. Thus the limits of our approach

are identified: as soon as the currents become nonmotononous and oscillate, the effective temperature

βeff(t) and ratio of currents R(t) cannot be determined.

In the non-interacting case, with V =W = 0, or its perturbations with V � 1, no proportionality

can be expected between JN and J E: R(t) is thus ill-defined. This is clearly demonstrated in free

systems, where the Bloch oscillations are exactly described by Eq. (5.50). The continuous transition to

the monotonous behavior of interacting systems can be seen in Fig. 5.7, where the proportionality is

restored.

5.6 Driven integrable doped Mott insulators

After showing that our method to determine R(t →∞) reliably applies to the driven generic case,

we restrict the scope to driven integrable systems and set W = 0, with V > 2 in this chapter.

According to the LR theory, jN and jE should grow linearly in time for a dc driving. However, this

linear growth cannot be unlimited in time under a finite driving as argued in the preceding sections.

Then, the currents may develop either into BO or into a decreasing quasistatic current as observed for

generic systems. The latter is also possible since finite F breaks the integrability. Figure 5.8(a) shows

that the strength of the driving determines the scenario which prevails. We observe oscillatory response

in the limits of very weak and very strong driving, and quasisteady currents for the intermediate F .

The relation between jN and jE can be inferred from Fig. 5.8 as well as from the parametric plots

shown in Fig. 5.9. For a weak–to–moderate driving, both currents are roughly proportional to each
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Figure 5.7: Expectation values for the currents jE (solid) and jN (dashed, same color) plotted together as a

function of the rescaled phase for different values of the driving field F . The system is (nearly)-noninteracting with

L = 24, N10. For weak interactions the currents have very different periods, since J E1 is negligible. For F ' V , the

oscillations are in phase.

other. It holds true independently of whether these currents are quasistatic as shown in figures 5.8(b)

and 5.9(b) or undergo the Bloch oscillations (Fig. 5.6). Hence in this regime the ratio R(t) is indeed well

defined and meaningful despite the singular LR of the integrable system. The proportionality between

oscillating currents jN and jE for F → 0 is rather unexpected. Such proportionality is evidently broken

for BO for very weak V (see Fig. 5.7) and/or large F (see Fig. 5.6).

In order to explain the numerical results we first focus on the regime of intermediate driving, when

currents show the same steady behavior as in generic systems under quasiequilibrium evolution. Hence,

we apply a similar phenomenological modification of LR which turned out to be successful in the case of

generic systems [MP10,MBP11]. Since the driving itself is sufficient to damp oscillations of the energy

current, the main effects must be the broadening of the singular response functions [AG02].
A phenomenological attempt would be to modify Eq. (1.72) using a Lorentzian ansatz with an

effective scattering rate Γ [F]

δ(ω, F) −→
1
π

Γ [F]
(ω2 + Γ [F]2)

. (5.51)

It leads to an effective dc response σE(ω→ 0) = τE/Γ and a quasistatic energy current

jE =
τE

Γ
F. (5.52)
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Figure 5.8: Currents for L = 24, N = 10, V = 3 and W = 0. (a) jE(t) (solid lines) together with RjN (t) (dashed

lines) for R shown in the legend. (b) R(t) vs instantaneous energy compared to RMazur [see Eq. (5.54)].

We have used this formula together with the numerical data for jE(t) and determined the (phenomeno-

logical) effective scattering rate shown in Fig. 5.10(a). One may observe that Γ increases with F and

after the initial transient it becomes independent of the instantaneous energy. Therefore the heating

effect (dependence on the energy) is included entirely in the sum rule τE , while Γ describes solely the

broadening of the response–function by external driving.

It is also interesting that the numerical values of Γ are very close to F , so the effective scattering

(damping) rate is close to the frequency of the BO (ωB = F). Therefore, within this phenomenological

picture the regime of the quasistatic current is just at the boundary of overdamped BO.

The same reasoning should also hold for the particle current, however the numerical analysis would

be much more demanding since close to half-filling (〈n〉 ∼ 1/2) the stiffness DN � τN/2 in contrast to

DE = τE/2. However, with the strong assumption that a single scattering rate gives the broadening of

both response functions, one may estimate the ratio R(t →∞) in the quasi-equilibrium regime

R(t →∞) =
2πDEδ(ω, F)
2πDNδ(ω, F)

�

�

�

�

F→0

. (5.53)

The finite scattering introduced in Eq. (5.51) provides a regularization of the singular response functions.

In the limit of F → 0 this allows to have a well-defined ratio.

The current ratio can be estimated using an alternative approach to the LR conductivities, using

Mazur’s inequality introduced in Section 1.4. The expectation value jN (t →∞) can be bounded from

below by the projection of JN on the most relevant local conserved operator Q3 = J E , using Eq. (1.75).

Thus, R= DE/DN is estimated via the Mazur’s inequality

RMazur =
DE

DN
Mazur

=
τE

β L
〈J E J E〉
〈JN J E〉2

>
DE

DN
. (5.54)

The results in Fig. 5.8(b) and 5.10(b) in fact show that R(t →∞) is reasonably close to RMazur, provided

F is small enough. In the published article, the deviations between the results from the real–time

dynamics and Eq. (5.54) in Fig. 5.10(b) were overestimated, since RMazur was determined at E→ E∞,

instead of the highest reachable energy E(tmax) as done here.
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Figure 5.9: Parametric plots jE(t) vs. jN (t) for V = 3, W = 0. (a) Results for L = 24, N = 10 (b) L = 26, N = 9 In

the two latter panels the straight lines show τE/τN for the initial β [see Eq. (5.44)] and RMazur for β → 0 [see Eq.

(5.54)].

Quite surprisingly, the prediction (5.54) is accurately fulfilled also for weaker driving when both

currents oscillate. In Fig. 5.9(b) such behavior is shown for a different filling factor, providing an

independent test. After a short transient, the currents oscillate perfectly in phase with a relative

amplitude R satisfying the Mazur bound of Eq. 5.54, regardless of F . This agreement makes a clear

connection between the BO under finite but weak F , and the stiffness within the LR theory. Note also

that this relation is broken for large F , when BO are independent of integrability and occur also in

generic systems.

5.7 Integrable metals close to half-filling

We now turn to the case V < 2 when the system is metallic at arbitrary filling factor. For moderate

fields, currents again display only modest oscillations, so the ratio R(t) can be determined directly, as

shown in Fig. 5.11.

It has been shown for integrable metals at half–filling that the Mazur bound needs to be formulated

in terms of quasi-local conserved operators, as mentioned in Section 1.4.1, otherwise DN
Mazur = 0 while

DN stays nonzero. For slightly smaller concentration of fermions [HPZ11] (〈n〉 < 1/2), DN is still

much larger than DN
Mazur, hence the ratio R(t →∞) was expected to be consistently lower than RMazur

formulated in terms of J E alone (see Eq. 5.54).

However, the numerical data in Fig. 5.11 show that R(t) departs from LR and approaches RMazur,

as if the energy current were the only relevant conserved quantity. Figure 5.12(a) shows R(t →∞)
calculated for small but nonzero W in comparison to the LR results obtained directly from the response

functions as well as with RMazur(W = 0). Upon decreasing W , the response of a driven integrable

system splits for different fields, departing from the predictions of LR theory towards R(t →∞) for

W = 0. When the dissipation induced by the electric field is minimal, the currents oscillate in phase

with maximal amplitude, in analogy to the case of doped insulators.

We expect that breaking the integrability by finite F is responsible for the observed departure from

LR regime. In order to verify this expectation we have compared the response of the system driven by

F > 0 with its nonequilibrium relaxation at F = 0. In particular, we have calculated the value of the
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Figure 5.10: Results for V = 3, L = 24 and N = 10. (a) Phenomenological scattering rate Γ as a function of the

instantaneous energy for W = 0. (b) R(t →∞) for small but finite integrability-breaking interaction W The value

of RMazur (at β = 0.2) for W = 0 is shown for comparison.

stiffness in 4 different ways, which we expected to merge when LR theory is applicable.

1. DN
Mazur given by Eq. (1.75)

2. The proper charge stiffness calculated from the sum rule in Eq. (2.78), computing the regular

conductivity in the initial microcanonical state

DN
LR =

τN

2
−

1
2π

∫ ∞

−∞
σN

reg(ω) dω. (5.55)

3. The stiffness under long-time driving. For a system evolving under finite F one can estimate the

charge stiffness from R(t →∞) assuming that jE/ jN ' DE/DN
driving holds in long–time regime

similarly to the case of doped insulators. Then,

DN
driving =

τE

2R(t →∞)
. (5.56)

4. The stiffness of a system undergoing an instantaneous change of the magnetic flux which should

also be consisted with LR. This corresponds to the determination of DN from the quench protocol

shown in Fig. 5.3 and quantified by Eq. (5.34)

jN (t →∞)
jN (t → 0+)

=
2DN

quench

τN
. (5.57)

All these estimates of the stiffness are compared in Fig. 5.12(b). For vanishing electric field DN
driving

approaches DN
Mazur� DN , whereas DN

quench nicely reproduces the LR result DN
LR. The latter agreements

holds also for strong quenches ∆φ, i.e. for relaxation from far–from–equilibrium states. This leads

to different expectations of R depending on the method used to estimate DN , and different measured

thermoelectrical responses: if the system is driven, the long–time value of the current jN is lower than

in the quench protocol, whereas the response for the energy current is proportionally the same, leading

to differing values for the thermoelectrical response.

It remains to be checked whether jE(t)/ jN (t) approaches RMazur also for other driven integrable

systems. Recent results [MPP15b] suggest that higher order conserved quantities, having a support
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Figure 5.11: R(t) as a function of instantaneous energy for V = 1.5, W = 0. (a) Results for L = 24 and N = 10.

(b) L = 26 and N = 9. Dashed lines show RMazur based on Eq. (5.54) and the LR ratio DE

DN from Eq. (5.46) both at

β = 0.1.

over a larger number of sites than the fundamental conserved quantity J E , are less robust with respect

to integrability breaking perturbations. The tools available at the moment are perfectly suited for the

analysis of integrability breaking in the quench protocol, which requires only two instantaneous operator

bases: one before and one after the quench. On the other hand, the driven case requires the use of the

Floquet formalism with an infinite-dimensional basis over a period of oscillation of the time dependent

Hamiltonian. Thus, the deeper understanding of the contrasting result for driving and relaxation remains

an open problem and requires further studies.
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Chapter 6

Reduced dynamics and entropy

density in strongly driven systems

In this chapter we set up the local analysis of thermodynamics of interacting quantum systems strongly

driven in time, needed for subsequent analysis of inhomogeneous thermoelectrical devices, by studying the

exact dynamics of any subsystem.

In Chapter 5, we used local observables to monitor the evolution of a driven quantum systems.

We showed that in generic, nonintegrable systems, for slow enough driving F , the flow of the particle

current produces an increase in the energy of the system due to the Joule effect.

All pointed to the direction that the work being done on the ring by the field is being dissipated

into heat. The system act as a resistor, leading to an increase of the temperature, not storing energy

reversibly as in a reactance [Lan87]. However, irreversible heating can not be demonstrated only by

looking at the expectation values of a few local observables. In fact, the unitary evolution of the system

can be in principle (and on the computer) reversed.

To settle this question, in this chapter we study the exact dynamics of the Reduced Density Matrix

(RDM) of a subsystem, by evolving the wavefunction of the whole system in time with a numerically exact

method. The approach opens a rare window into the local dynamics of strongly correlated quantum

systems. The spectral statistics of the RDM are shown to be consistent with chaotic, thermal evolution.

The local entropy, defined as the entanglement entropy of the RDM, increases according to the second

law of thermodynamics. The subsystems are shown then to evolve in quasi-equilibrium according to

a canonical thermal distribution dictated by a time-independent entanglement Hamiltonian, with the

temperature set by the external driving.

6.1 Reduced Density Matrix

The wavefunction |ψ(t)〉 of a closed1 system contains complete information about the values of all

possible observables, captured by the density matrix

ρT (t) = |ψ(t)〉〈ψ(t)|, (6.1)

where the subscript T stands for total system. Its evolution in time follows the Time Dependent

Schrödinger Equation, with Hamiltonian given by Eq. (5.1) and driven in the same way as in the

1Not exchanging particles or heat with the environment, but the environment can act on the system

88



CHAPTER 6. REDUCED DYNAMICS AND ENTROPY DENSITY IN STRONGLY DRIVEN SYSTEMS 89
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Figure 6.1: The whole strongly interacting system can be partitioned into two: a subsystem of interest on which

the RDM will be calculated, and the (larger) remainder of the system which acts as a thermal bath.

previous chapter. The time propagation, following sections 2.2 and 3.2.3, is numerically exact and the

description of the whole system by |ψ(0)〉 = |ψE〉 in the microcanonical ensemble was demonstrated to

be very effective at capturing the physics of the high–temperature t − V −W model.

The interacting ring T = S ⊗ B, can be decomposed as a subsystem of interest S on M sites, and

a bath B comprising the remaining L − M sites, as seen in Fig. 6.1. The information regarding the

subsystem S alone can be obtained from its density matrix ρS(t), which is a partial trace over the bath

degrees of freedom, analogous to the integration over marginal variables in probability theory:

ρS(t) = TrB ρT (t) = TrB |ψ(t)〉〈ψ(t)|. (6.2)

Usually, the evolution of a small system is performed perturbatively, supposing a weak coupling to a

much larger bath that is treated as macroscopic object (e.g. having infinitely short relaxation times).

Perturbation theory cannot treat the case of a subsystem of a strongly interacting ring of fermions, where

the coupling between the sites inside the subsystem and to the bath has equal strength. The setup we

propose is able to capture very accurately the dynamics of the subsystem: as shown in Section 3.1.4, the

description of local observables, such as a whole subsystem density matrix ρS is exponentially accurate

in the size of the total Hilbert space, where the error is bounded by the ratio DS
D . Even in the case of the

largest subsystem we considered, with size equal to half of the ring M = L/2, the error ratio is of the

order DS

D2
S
= 1

DS
� 1.

The dynamics of the whole system T , generates a map on the projected RDM of the subsystem. This

map is given by

ρS(0) = TrB |ψE〉〈ψE |
t
−→ ρS(t) = TrB |ψ(t)〉〈ψ(t)|. (6.3)

The partial trace, as explained below, is a sum over all matrix elements of the bath that are irrelevant

for ρS: the larger B, the better Hilbert space average2 is obtained for ρS .

Since the density matrix of the whole system is equivalent in terms of information to the D-dimensional

complex wavefunction |ψ〉, where we momentarily omit the temporal dependence for convenience of

notation, it is not necessary to construct the D× D density operator in order to perform a partial trace.

Using the computational basis {|i〉, i = 1, . . . , D} to expand the wavefunction

ci = 〈 i |ψ〉 , (6.4)

2In the sense of a smaller variance of the expected value



CHAPTER 6. REDUCED DYNAMICS AND ENTROPY DENSITY IN STRONGLY DRIVEN SYSTEMS 90

the matrix elements of ρT are

〈i |ρT | j〉= 〈 i |ψ〉 〈ψ | j〉= c∗j ci . (6.5)

The subsystem S also possesses a complete basis of dimension 2M , where M is the volume (or number

of sites) of the subsystem. The number of fermions NS = {0,1, . . . ,min(N , M)}, can vary up to the

smallest number between the volume and the total fermions in the system. The RDM of the subsystem

can be organized from the beginning into a block-diagonal structure as seen in Fig. 6.2, with each block

labeled by its fermion occupation number NS . Each block has dimension DS =
�M

NS

�

. In this chapter, the

largest RDM has been determined for a chain with L = 26, N = 13, where we selected M = 12 sites for

the subsystem, and used the largest subspace with NS = 6 fermions.

Figure 6.2: Block diagonal form of the reduced density matrix for the subsystem S. The blocks are ordered in

growing size from DS = M for NS = 1, to DS = M(M − 1)/2 for NS = 2 and so forth.

We apply the analysis of the RDM to the largest irreducible component, thus we select usually

NS = M/2< N , with maximum dimension DS ≤
M !

(M/2)!2 .

In order to compare directly subsystems of different sizes M , we will switch to densities. The energy

density in a subsystem can be calculated by

ε =
Tr[HρS]

M
, (6.6)

equal to the density of the whole system ε(t) = 〈H(t) 〉/L, up to microscopical fluctuations. The

subsystem also comes with a corresponding fermion density n(t) = 〈N 〉/M , and the entropy density

s(t) = S/M , displaying a weak nontrivial scaling with M .

6.1.1 Entropy density

The local generation of heat, accounting for the increase of temperature, needs to be accompanied

by a corresponding increase in an entropy-like quantity. Since this is a nonequilibrium setting, the

entropy is not formally defined. The entropy is not an observable in quantum mechanics, as no linear

Hermitian operator can be found to have the entropy as its expected value. The thermodynamical

entropy of a system S, prepared in a canonical ensemble ρβ by weak coupling to a thermostat, is equal

to the entanglement entropy of S with the thermal bath B. As argued in Chapter 3, the system S will be

in a canonical state irrespective of the details of the coupling to B or to the exact state of S ⊗ B. The

equivalence leads to the definition of the von Neumann entropy of a quantum thermal state as

Sβ = Tr[ρβ logρβ].

The nonlinearity in ρ of the entropy functional is evident, precluding the existence of a state-independent

operator Ŝ such that Tr[ρβ Ŝ] = Sβ .
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Following the approach of Deutsch, for systems with local interactions, an approximate entropy

measurable can be constructed, with a definition independent of the preparation of the thermal state. It

is the entropy density of the RDM, which in the limit of small subsystem size M/L→ 0 must be close to the

entropy density of the whole system, as the thermodynamical entropy is additive when the correlations

are weak3. Considering a subsystem S of a larger system S ⊗ B, its entanglement entropy SE is

SE = Tr [ρS logρS] = Tr [ρB logρB] . (6.7)

The same entanglement entropy is shared by both S and B, which can be trivially proven using the

Schmidt decomposition of the density matrix ρS⊗B before performing the partial trace. This is intuitively

supported by the notion that the entanglement is holographic, i.e. depends only on the shared surface

between the two parts of the system.

The entropy density s of the subsystem S is defined as

s ≡
SE

M
=

Tr [ρS logρS]
M

(6.8)

Clearly, since the system is finite and the dimension of the Hilbert space is bounded, the entanglement

entropy density for the bath tends to zero at all temperatures, because in that case M/L→ 1, or the

subsystem size grows macroscopically whereas its boundary surface remains microscopic. Thus the

entropy density is a valid thermodynamical-entropy-like quantity under the constraint

M � L/2. (6.9)

The main advantage of the entropy density is that it is nonzero for arbitrary states of the system S⊗B,

including highly excited pure states |ψ(t)〉. Even in the pure microcanonical ensemble, the density is

nonzero and approaches the thermodynamical value. The notion that pure states have zero entropy

comes from erroneous conflation (since there is no alternative definition) of the entanglement and

thermodynamical entropy. Using the entropy density allows for the correction of this bias. Moreover, the

entropy density s(t) as a function of time serves as a useful measurable outside of equilibrium, where

the usual von Neumann definition cannot be applied.

Now, we proceed to outline the computational tools for the entropy density, by providing an efficient

algorithm to project the RDM in real time, from which the entanglement entropy can be readily calculated.

6.1.2 Summation algorithm

In order to determine the matrix elements of ρS , a basis needs to be selected: the vectors |l〉 are in

one-to-one correspondence with the set of DS combinations of NS fermions on M sites, which can be

represented as vectors with at most NS ones and M − NS zeros. The order relation is given number the

sites from the right to the left, i.e. the highest numbered site is the leftmost. The vectors are indexed

starting with |1〉 having NS ones on the right, and |DS〉 having NS ones on the left.4 As an example, for

M = 5, NS = 3, the eight vector state has the following enumeration on its bits:

|8〉 = |15 14 03 02 11 〉 with the positions as subscripts. (6.10)

Any basis vector of the whole system can be seen as the tensor product of a vector from the system

and one from the bath

|i〉T = |m〉S ⊗ |b〉B. (6.11)

3It is the case between two disjoint subsystems
4The convention allows using machine bitwise comparisons if the state vectors are represented as integers on common Little

Endian processors such as Intel’s.



CHAPTER 6. REDUCED DYNAMICS AND ENTROPY DENSITY IN STRONGLY DRIVEN SYSTEMS 92

The matrix elements of the RDM of the subsystem S are calculated by summing over all bath vectors. This

is equivalent to extending the sum over the whole-system vectors that share a particular configuration

of the subsystem: given |m〉S , the sum is performed over all |b〉B, i.e. all |i〉T such that T 〈 i |m〉S 6= 0:

ρS =
∑

|b〉B
B 〈b |ρT | b〉B =

∑

iT , jT ,kB

c∗j ci B 〈 b | i〉T
︸ ︷︷ ︸

|m〉S

T 〈 j | b〉B
︸ ︷︷ ︸

〈n|S

(6.12)

S 〈m |ρS | n〉S =
∑

|b〉B

c∗j ci such that T 〈 i |m〉S ⊗ |b〉B T 〈 j |n〉S ⊗ |b〉B 6= 0. (6.13)

The result of the sum is a well defined matrix, due to Eq. (6.11) and the tensor identity 〈 bB | iT 〉 = |m〉S .

The constraint in the sum of Eq. (6.13) does not allow for a simple recipe. The range of elements such

that T 〈 i | b〉B 6= 0 needs to be determined. The length of the range is the dimensionality of the Hilbert

space of the bath, DB =
� L−M

N−NS

�

. If the sites are ordered carefully, such a range is dense: only the index i1
of the first and iDB

of the last element require computation, whereas the other numbers lie in between:

|i〉T with i ∈ [i1, . . . , iDB
]. (6.14)

The ordering properties given above serve this purpose. We need to generate all states |b〉B of the

bath with the states of the subsystem |m〉S fixed. Putting the bits corresponding to the configuration

|mS〉 in the leftmost positions, and the states |b〉B on the right, i.e. determining the RDM of the sites

[L−M +1, L−M +2, . . . , L], we obtain the ordering needed. Let us motivate it with an example, using 4

sites for S as well as for B, with 4 fermions in total. There are 6 possible states in S (and B) with NS = 2:

basis(S) = basis(B) = |0011〉1, |0101〉2, |0110〉3, |1001〉4, |1010〉5, |1100〉6. (6.15)

The order relation in S (and B) is given by their subscript. In T = S⊗ B, the states are ordered first

according to their index in S, then with respect to the index in B. Thus

|1010〉5|1100〉6
︸ ︷︷ ︸

51

> |1010〉5|0011〉1
︸ ︷︷ ︸

46

> |1001〉4|1100〉6
︸ ︷︷ ︸

45

> |1001〉4|0011〉1
︸ ︷︷ ︸

40

. (6.16)

In S, there are
�8

4

�

= 70 possible states, and the numbers below the braces refer to that numeration.

The states of the form |1010〉 ⊗ |b〉B with |b〉B ∈ basis(B) take the contiguous range from i1 = 40 to

iDB
= 45. In general, given any state |m〉S , the range can be determined by looking up |i1〉T = |m〉S⊗|i1〉B

and |iDB
〉T = |m〉S ⊗ |ie〉B. The sum in Eq. (6.13), requires 4 state lookups for each matrix elements to

determine the two ranges [i1, . . . , iDB
] and [ j1, . . . , jDB

]. The ranges are different in general. According

to the example above, the matrix element corresponding to |5〉S and 〈4|S is:

〈1010 |ρS | 1001〉=
5
∑

k=0

c∗k+40ck+45, (6.17)

with a single summation continuous range. The lookup is best performed by a binary search of the basis

vectors list, in O(log D) steps, but the actual algorithm used5 for the lookup is irrelevant, as long the

ordering is the same. Of course, if the ordering is reversed, the optimal location for S on the chain needs

to be rearranged.

5The combinatorial number system gives a way to map the combination of fermions to the combination index without the

need for a table
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Arbitrary positions

If the sites spanned by S are not the last M ones of the chain, the previous algorithm cannot be applied.

Determining each index for a matrix element would need 2DB lookups, which for a 924× 924 sized

matrix would amount to billions of lengthy6 operations, taking hours on a modest desktop computer.

However, any contiguous range of M sites over which we defined S can be mapped unitarily into

[L −M + 1, . . . , L]. The unitary mapping is a translation T , a permutation with sign information due

to the fermionic nature of the system, as described in Section 1.1.1.2. Recalling the example above,

if one were interested in the RDM of the first 4 sites, the range corresponding to the matrix element

|b〉B ⊗ |1001〉S is {13,23, 29,43, 49,59}, with no easily determined relation.

After the permutation T

|ψ〉 7→ T |ψ〉

ci 7→ sign(σ[i]) cσi

and the range is mapped the one given by Eq. (6.17), with modified coefficients ci . The sign is different

for each of the basis vectors, since the fermion operators were rearranged differently. If the RDM of

subsequent sections of the ring is needed, one can rotate the system by one site at a time and project

the RDM at each step. After L rotations, the wavefunction is mapped into its initial value.

6.2 High Temperature Expansion

In order to obtain analytical approximations to the thermodynamical parameters, we employ High

Temperature Expansions (HTE). The system under study is started close to and brought near the infinite

temperature fixed point at T =∞ or β = 0, the small parameter around which we develop the series

expansion. Most of the observables in the canonical ensemble, at fixed temperature and number of

particles, can be calculated exactly close to the HT limit. Any observable can be expanded as

〈A〉β =
Tr[Ae−βH]

Tre−βH
=

Tr[A− βAH +O(β2)]
Tr[1− βH +O(β2)]

. (6.18)

The denominator contains the factor Tr[1], equal to the infinite-temperature normalization factor

Z∞ = limβ→0 e−βH = D equal to the dimension of H . By collecting the normalization term, the

expansion can be organized in powers of β , where each term is of the form




AHk
�

∞ =
Tr[AHk]

Tr[1]
, (6.19)

for some exponent k. The first order for any observable is

〈A〉β = 〈A〉∞ − β
�

〈AH 〉∞ − 〈A〉∞ 〈H 〉∞
�

+O(β2). (6.20)

The scheme relies on the ability to calculate the trace of any observable easily. Any off-diagonal operator

such as the kinetic energy of the Hamiltonian has zero trace and thus expectation value in the HT limit,

e.g.



c†
i+1ci

�

∞ = 0. Diagonal observables, on the other hand, usually are nonzero. They can be written

as strings of local operators ni n j nk, . . ., which have a simple expectation value if the sites are different

i 6= j 6= k:

〈n1 〉∞ =
N
L

6Not cache friendly
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〈n1 n2 〉∞ =
N(N − 1)
L(L − 1)

〈n1 . . . nm 〉∞ =
N(N − 1) . . . (N −m+ 1)
L(L − 1) . . . (L −m+ 1)

The expectation values are dictated by the constraint of having N available fermions on L sites, with

Pauli exclusion. If the expectation value of two fermion operators is needed, the first fermion must be

placed, then the number of positions for the second is reduced to L − 1 and only N − 1 fermions are

available, and so on. At first order in L−1 for m operators, the expectation value is

〈n1 . . . nm 〉∞ =
�

1
2

�m+1 �

1−
(1+m)M

2L
+O(L−2)

�

. (6.21)

Without the particle number constraint, in the grand canonical ensemble, the term in brackets would

just equal 1.

Any expression involving a diagonal operator, coming from powers of H such as HV HW , can be

computed using the table above. However, if the number operators appear on the same sites, due to

the idempotency of fermionic number operators (〈n1n1 〉 = 〈n1 〉), they must be counted only once.

As an example, the term
¬

∑L
i=1(nini+1)

∑L
j=1(n jn j+1)

¶

∞
requires counting the multiplicities of the

tuple (ni , ni+1, n j , n j+1) over the double sum. We have explicitly not taken into account the particle-hole

symmetrized interaction shown in Eq. (1.17) for sake of simplicity. The result is

L(L − 3)



n1n2n3n4

�

∞ + 2L 〈n1n2n3 〉∞ + L 〈n1n2 〉∞ =
L2

16

�

1−
1

L − 1

�

. (6.22)

The count of multiplicities must be a polynomial pk(L) of order at most k in L with integer coefficients,

for each of the k terms in the sum representing the counts of non-overlapping indexes. The translational

invariance always allows to fix the operator with the first free index
∑

i ni . . . to Ln1 and reduce the

polynomials to order pk−1(L). To determine the coefficients, an explicit calculation on a finite-size ring

with dimensions L = [k+ 1, k+ 2, . . . , 2k] 7 can determine k coefficients of the polynomials through an

integer-valued interpolation. The fitting trick is the most efficient implementation. For the example

above, it is enough to calculate p(L = 5) and p(L = 6), respectively for 2,3 and 4 unique indexes, to fit

3 polynomials of the form L2 + a1 L + a0 = L2.

Offdiagonal operators have zero trace, such as Hkin, as well as mixed products with odd powers,

e.g. 〈HkinHV 〉∞ = 0. Their even powers, starting from H2
kin, have nonzero diagonal terms. They can be

rearranged into sequences of diagonal operators and irrelevant offdiagonal terms by proper ordering.

The result of the ordering can be shown to be equivalent to a modified fermionic Wick’s expansionW.

Every sequence of creation and annihilation operators is Wick expanded, by matching every creation to

a destruction operator. This is equivalent to throwing out all normal ordered operators, and setting the

contraction value to being a number operator to be evaluated later in the HTE scheme. One step of the

expansion could be

W
�

c†
i f1 f2 . . . fk c j

�

= δi j ni (−1)kW [ f1 f2 . . . fk] (6.23)

where the group of operators f1 . . . fk, and any other pairwise combination will be further contracted.

The fermionic sign has been taken into account by counting the number of operators in between. The

result is a string of number operators and delta function of symbolic indexes, which need to be simplified.

The matching produces a series of terms such as δi, j or 1−δi, j , which can be counted at the end of the

7The sizes given here are the smallest able to avoid artifacts due to accidental overlap
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expansion to determine how many unique indexes are left. For the first nonzero power of the kinetic

energy the expansion can be done by hand, yielding




H2
kin

�

∞ = t2
h

*

∑

i

�

c†
i+1ci + c†

i ci+1

�

∑

j

�

c†
j+1c j + c†

j c j+1

�

+

∞

= 2t2
h

®

∑

i

(ni − nini+1)

¸

∞

=
2t2

hN(N − L)

L − 1
. (6.24)

The Wick expansion is the most complicated step of the HTE, effectively limiting the maximum order

reached in Eq. (6.20) to β4 in our case. The results quoted here are however limited to first order for

sake of brevity.

6.2.1 HTE for the energy

Given the Hamiltonian in Eq. (5.1) at zero phase, the term linear in β for the expectation of the

energy from Eq. (6.20) reads

〈H 〉 (β) = 〈H 〉∞ − β
�


H2
�

∞ − 〈H 〉
2
∞

�

= 〈H 〉∞ − βσ2
∞, (6.25)

where we have recognized that the expression in the last brackets is the variance of the energy at infinite

temperature σ2
∞. All expressions referring to the expectation values at T =∞ will be denoted by the

symbol∞. The temperature can be inferred from the instantaneous energy E to

β(E) =
〈H 〉∞ − E
σ2
∞

. (6.26)

Plugging the operators H = Hkin + HV + HW from Eq. (1.4) into the equation above, knowing that

〈Hkin 〉∞ = 0, one obtains exactly

〈H 〉∞ = 〈HV 〉∞ + 〈HW 〉∞ =
V +W

4
L(L − 1)− 4N(L − N)

L − 1
. (6.27)

The linear term in β is too long to be reported here, but the leading–order expression at half filling,

as in the remainder of this chapter, is

〈H 〉β = −
1
4
(V +W )−

β

16

�

8t2
h(L − 1) + 4VW − L(V 2 +W 2)

�

+O
�

1
L

�

. (6.28)

Another observable useful to estimate the temperature is the kinetic energy. Since the expectation value

is zero at T =∞, the value to linear order in β is just

〈Hkin 〉 (β) = −β



H2
kin

�

∞ , (6.29)

using the expression given above in Eq. (6.24). In thermodynamical equilibrium the temperature

inferred from the kinetic energy βkin(t) = −Hkin(t)/



H2
kin

�

∞ is consistent with any other measure,

however during the time evolution the instantaneous temperature thus measured can differ [LGBP14].
The HTE relations are useful also for thermodynamical quantities defined over the subsystem S. The

energy density, due to its good scaling with the system size L, follows the same relation as the energy:

εβ = ε∞ − βσ2
∞. We use the same symbol for the variance of the density, not to burden the notation

further.
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Figure 6.3: Comparison of the HTE results for expansion of the energy up to order β4, with the numerically exact

results from the Chebyshev sampling of the energy spectrum density. The system has size L = 24, N = 10. (a)

Generic metal with V = 1.5, W = 1 (b) Insulator with V = 4, W = 1. The HTE in both cases is seen to hold well for

the energy operator up until β ' 0.4.

6.2.2 Canonical entropy of the RDM

From the equation linking the energy and the temperature, more thermodynamical relations can

be derived. We use the density notation, since we refer to quantities pertaining the subsystem. The

definition of the temperature in the microcanonical ensemble is β = ∂ s
∂ ε , which can be inverted to

ds = β dε. To obtain s(ε) both sides are integrated

s(ε) = s∞ +

∫ εβ

ε∞

β(ε) dε = s∞ −
(εβ − ε∞)2

2σ2
∞

(6.30)

For a system of L sites at infinite temperature, the thermodynamical entropy is just the entropy of a flat

distribution over D states, S∞ = log D, with D =
� L

N

�

. In the limit of infinite L and finite fermion density

n= N/L, using Stirling’s formula the entropy in that case is

S∞(n) = L[(n− 1) log(1− n)− n log n], S∞

�

n=
1
2

�

= L log(2). (6.31)

The entropy density at infinite temperature s∞, for a subsystem with Hilbert space dimension

DS = 2M is not log(DS)/M = log(2). The canonical constraints for the number of particles in the full

system play a role. Supposing that the energy density follows Eq. (6.20), identifying the correct value for

s∞ is the leading order correction. At infinite temperature, s∞ weights the combinations of fermions in

the subsystem. Given a ring with L sites and N fermions in total, what is the probability P(NS , M , N , L)
of each state with NS fermions enclosed in the M consecutive sites of the subsystem? Out of the

� L
N

�

states, the number of arrangement satisfying the criterion are the combination of N − Ns fermions onto

the remaining L −M sites:

P(NS , M , N , L) =

� L−M
N−NS

�

� L
N

� . (6.32)

The thermodynamical entropy density equals the Shannon entropy density of the probability distribution:

in each sector with NS ∈ [0, M], it equals the entropy of each state P log P, multiplied by the number of
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states
�M

NS

�

. The sum is performed at constant system size (L) and occupation (N):

s∞ = −
1
M

M
∑

NS=0

�

M
NS

�

P(NS , M) log P(NS , M). (6.33)

The expressions above can be calculated numerically by performing the sum, giving s(M)≈ log(2), if

the full system is at half-filling. For M = 2 it can be checked explicitly that limL→∞ s(2) = log(2). The

departures can be calculated exactly, as listed in Table 6.1.

M s(M)− log(2)

2 -0.000400107

4 -0.00127077

6 -0.00225232

8 -0.00337116

10 -0.00466372

12 -0.00618211

Table 6.1: Deviations for L = 26, N = 13, from the perfect scaling of the entropy density s− log(2), as the dimension

of the subsystem M increases.

In the publication, we calculated the series expansion in L−1 of s(M) to the order L−k, which

terminates for every term at the O(N k) order. Using computer algebra to perform the expansion over L

and sum over NS , we obtained the following simplified formula valid at half-filling:

s∞ ≈ log(2)−
M − 1
4L2

−
M2 − 1

6L3
(6.34)

which lends itself to extrapolation for higher orders

s∞
Extrapolation
−−−−−−−→ log(2) +

M log
�

L
L−1

�

+ log
�

1− M
L

�

2M
, (6.35)

in perfect agreement with the numerical results of Table 6.1.

In order to further improve the results for the subsystem entropy in thermal equilibrium, a much more

accurate relation between energy density and temperature can be obtained using the methods outlined

in Section 2.3.5, together with the exact infinite-temperature entropy density given in Eq. (6.33). We

have found the usefulness of the analytical first-order result in Eq. (6.30) to be more appealing for a

comparison in the sections to follow.

6.3 Quasi equilibrium

The initial equilibrium state is prepared corresponding to a well-defined temperature β . The

microcanonical approach at an average energy E = E(β) gives equivalent results. All observables

calculated in the initial state agree with their equilibrium expectation values.

What about later times? We posited that after we switch on the electrical field F > 0 at t = 0,

after a nonequilibrium transient, we reach a quasi-equilibrium state, where the expectation value of

local observables depend only on the effective temperature, set by the local energy density ε(t) =
〈ψ(t) |H(t) | ψ(t)〉/L, from which an effective temperature βeff(t) = βeff[ε(t)] is inferred, as explained

in Section 5.3, Eq. (5.39).
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Figure 6.4: Instantaneous entropy density s(t) vs. energy density ε(t) for generic metals. (a) Results for systems

driven by a field F = 0.1 and M = 6, 10 subsystems. Dashed curves represent high–T analytic results, Eq. (6.30) for

L→∞. In the insets the high-ε regime is magnified and the corrections from Eq. (6.33) to s∞ are included and

marked as horizontal lines. (b) Relaxation after flux quenching for a M = 12 subsystem. Here, dashed curves show

quasi-equilibrium results for the same systems driven with F = 0.1. Arrows mark the direction of the processes.

If that is the case, then driving a system slowly increases its energy density due to the Joule effect,

and the effective local temperature rises, as reflected by s(ε) in Eq. (6.30).

To test the prediction using the results from the subsystem entropy, we prepared many different

initial states, for generic and integrable systems with L = 24, N = 12 (half filling). The system was

chosen in a metallic phase (see Section 1.1.3), with V = 1.4 and W = 0 (W = 1) if integrable (resp.

generic). The distinct initial states correspond to different initial conditions: β = 0.3,0.2,0.1, as it

can be seen from the different values of the initial energy density (higher for lower β). The RDM was

calculated on M = 6,10 in Fig. 6.4(a) and Fig. 6.5(a) in order to have a better convergence to the

thermodynamical limit (M → 0). In Fig. 6.4(b) and Fig. 6.5(b) we used M = 12 subsystems to have

better statistics in the RDM to compute the entropy. The systems were either:

1. Driven with F = 0.1: the weak driving should slowly increase the temperatures of the system

allowing them to reach a quasi-equilibrium after an initial transient, as shown in Section 3.1.1

and 3.1.4.

2. Quenched by an instantaneous phase change: in this case the evolution proceeded according to a

constant Hamiltonian for t > 0, as explained in Section 5.2. The expectation is thermalization for

generic systems, and a nonthermal equilibrium state for the integrable case (see sections 3.1.2

and 3.1.5)

As a strong indication of the thermal (or quasi-equilibrium) nature of the state |ψ(t)〉 we can use

the relation (6.30) of the subsystem entropy density (defined in Eq. 6.8) and the energy density (6.6) of

the subsystem. Hence, we present in Fig. 6.4 the time-evolution of s(t) plotted versus ε(t) for a generic

system: driven by a constant electric field F = 0.1 in Fig. 6.4(a) and after a sudden flux quench in

Fig. 6.4(b).

We note that s(t) only weakly depends on M , confirming its macroscopic relevance [SPR12]. This is

in contrast with a specific case of the ground state, where we have found s(0)∝ M−1 in agreement

with area laws for the entanglement entropy [ECP10].
The relation defined in Eq. (6.30) allows specifying regimes which are clearly nonequilibrium or

steady but non–thermal. The former case occurs after turning on the electric field, when s = s(ε) is convex



CHAPTER 6. REDUCED DYNAMICS AND ENTROPY DENSITY IN STRONGLY DRIVEN SYSTEMS 99

0.05 0.1 0.15 0.2

0.63

0.64

0.65

0.66

0.67

0.68

s

ε

F=0.1

0.65

0.66

0.67

0.68

0.69
s

0.683

0.688

0.20 0.22

0.05 0.1 0.15 0.2
ε

a) b)

Figure 6.5: Same plot as in Fig. 6.4, only for the integrable system with V = 1.4, W = 0. Instantaneous entropy

density s(t) vs. energy density ε(t) for (a) Driven system with F = 0.1, with data taken on M = 6 and M = 10

subsystems. (b) Relaxation after flux quenching for a M = 12 subsystem. Here, dashed curves show quasi-

equilibrium results for the same systems driven with F = 0.1. Arrows mark the direction of the processes.

contrary to the concave dependence which according to the aforementioned equation should characterize

the quasi–equilibrium evolution. More interesting is the observation in Fig. 6.5(b), that the stationary,

non–thermal state emerges when integrable systems relax after a sudden quench [RDYO07b,KWE11]
but s(t) remains evidently smaller than expected after the thermal relaxation. This result nicely complies

with the hypothesis of the generalized Gibbs ensemble (GGE) since ρGGE maximizes the entropy but

only subject to constraints imposed by the integrals of motion [RDYO07b,CCR11].
One of the nonlocal conserved operators is the time-averaged value of the current JN , as mentioned

in Section 1.4.1. The current does not decay after the quench, holding energy into motional degrees of

freedom. When the system is not integrable, this energy is transformed into heat by resistive interactions,

so the system can reach its equilibrium state via the entropy production. This mechanism is forbidden in

integrable state, which in the GGE equilibrium state have lower entropy, as shown in Ref. [SPR11,SPR12].
The results shown in Figures 6.4 and 6.5 hint at regimes when the system reaches a quasi-equilibrium

thermal state. In this case s(ε) should become independent of the initial state and close to the prediction

of HTE. Different starting temperatures were selected, but the observables of the system depend only on

the instantaneous energy density, after the initial transient regime. This indeed happens for integrable or

non–integrable systems driven long enough by a moderate steady F (remember that F breaks integrability

of an integrable system) or when non–integrable system relaxes after the flux quench as in Fig. 6.4(b).

It should be noted that after the quench the energy does not increase, since F = 0, however the system

slowly reaches the equilibrium manifold following unitary microscopical dynamics and the entropy

density rises. As mentioned in Section 1.5, the LR entropy production in a nonequilibrium state is always

positive and vanishes when the system finally attains the thermodynamical equilibrium. In the driven

systems, so much entropy has been produced by heating, that the equilibrium is achieved even with a

nonzero electrical field, by raising the temperature effectively to T =∞.
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6.4 Canonicality of subsystems

A more stringent criterion for a thermal state is the requirement that the RDM obeys the canonical

distribution

ρS(t) =
1

Zeff
exp[−β(t)Heff], (6.36)

whereby Heff plays the role of an effective subsystem Hamiltonian. In the literature, it is also called the

entanglement Hamiltonian [LR14,AAN13,VJ09,CH09,AHL12,WKPV13,PC11]
The effective inverse temperature βeff(t) can be determined by the instantaneous energy density,

using relation (6.26), or inverting the numerically exact Eq. (2.40) derived in Section 2.3. The main

open problem concerns the meaning of Heff when the subsystem is strongly coupled to its surroundings or

it is subject to external driving. However, we avoid this problem by testing the thermalization hypothesis

without specifying the explicit form of Heff.
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Figure 6.6: Eigenvalues λi of log[ρ(t)] for the integrable system driven by field F = 0.1 determined at time t such

that ε(t) = 0.21 but evolved from different initial energy densities ε0 = 0.04, 0.1 and different particle subsectors n.

(a) Subsystem with M = 6 sites, and 1 or 3 fermions (b) M = 12 sites with 3 or 6 fermions.

In order to verify that the quasi–thermal state is determined solely by the energy density, we have

computed the reduced dynamics of two identical subsystems (labeled by subscripts 1 and 2) driven by

the same field F = 0.1 but starting from different initial energies. We compare ρ1(t1) and ρ2(t2) for such

times t1 and t2 that both systems have the same instantaneous energies (temperatures) E(t1) = E(t2).
Then, one expects

log[ρ1(t1)] = −β(t1)Heff[φ(t1)] +∆1 and log[ρ2(t2)] = −β(t2)Heff[φ(t2)] +∆2. (6.37)

In other words, for the quasi–thermal state operators log[ρ1(t1)] and log[ρ2(t2)] should give Hamil-

tonians of the same system but possibly sensitive to different fluxes. Since the times were selected

to match the energy densities, the local temperatures β cancel out from the equation. The effective

Hamiltonians may have different eigenfunctions due to the flux dependence, but the energy spectrum

should be the same. The additional constants ∆1,2 depend only on the respective Zeff, but since the

latter are only functions of the temperature and Hamiltonian which are equal, the constants also cancel.

The above hypothesis was tested in Fig. 6.6 by comparing systems with the instantaneous temperature

(energy) but evolving from different initial conditions, for two different subsystems M = 6, 12 and two

sectors NS , respectively. It is quite evident that the spectra are independent of the initial microcanonical
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Figure 6.7: Spectra of log[ρ] for the integrable system (N = 6, n = 3) driven by F = 0.1 determined for t

corresponding to different β(t) obtained from HTE. Panels (a) and (b) show eigenvalues of log[ρ] and normalized

(and shifted) log[ρ]/β , respectively.

energy density ε0, at least for the states for which the previous results on the entropy density already

pointed towards thermalization.

One can also compare systems with different energies and check the exponential dependence between

ρS and β . Fig. 6.7(a) finally shows spectra of log[ρ(t)] for driven integrable system (only the largest

sector with n= 3 is presented). Various curves are obtained for successive times, when the system has

different instantaneous energies ε(t). For a quasi–thermal evolution the spectra of

log[ρ(t)]/β(t) = −Heff[φ(t)] +∆(β) (6.38)

should be equal up to a constant value ∆(β). As shown in Fig. 6.7(b), even the driven integrable system

perfectly fulfills this requirement. The results for generic systems are just as well defined, expected a

fortiori since the canonicality of RDM of integrable systems holds so well.

6.5 Temperature from the eigenvalue distribution

So far we have only mentioned the determination of the instantaneous effective temperature βeff(t)
based on observables such as the energy density ε(t). However, knowing that the RDM of any subsystem

is locally described by an effective Gibbs distribution, allows us to estimate a temperature from its

eigenvalues. In Fig. 6.8(a), we plot the observables needed for the determination of the temperature by

the methods described so far. The initial nonequilibrium transient needs to be identified, and to this end

we plot also the expectation value of the particle current jN (t). As argued in section 5.3, the current

has a monotonous value depending only on the temperature: we can identify the quasi-equilibrium

regime by choosing the time t0 after which the current has a slowly varying profile. Only after t0 the

quasi-equilibrium relations can be trusted. The times t < t0 are marked by a gray area on the plots.

A more stringent test has been employed in Section 6.3, using the concavity of the entropy density as

a function of ε. Fig. 6.8(b) shows s(ε) with the area corresponding to ε(t)< ε(t0) grayed out. Indeed

before t0 the entropy displays a nonthermodynamical convexity.

Fig. 6.8(c) shows the profile of the effective temperature βeff[ε(t)] determined using the energy

density, and the estimate βRDM(t) obtained from the distribution of the eigenvalues of Heff in Eq. (6.38).

Since Heff is not known a priory, the temperature can not be inferred directly. However, the ratio of the
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temperatures β(t1)/β(t2) can be obtained by comparing the eigenvalues λi of logρS(t) at different

times. In order to get rid of the unknown constant ∆(t) which equally shifts all the eigenvalues in the

same sector of the density matrix, we subtract the lowest eigenvalue λ1 from the remaining

λ̃i = λi −λ1 for i ∈ [2, . . . , DS]. (6.39)

After this necessary normalization, the ratio of the eigenvalues gives directly the ratio of the temperatures

λ̃i(t2)

λ̃i(t1)
=
β(t2)
β(t1)

for all λ̃i . (6.40)
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Figure 6.8: Determination of the temperature in a driven generic system with N = 24, L = 12, V = 1.4, W = 1,

using the RDM eigenvalue distribution on a M = 4 subsystem. The system is driven by a F = 0.2 field from an

initial equilibrium temperature β ≈ 0.3. (a) The expectation values for the (rescaled by a factor of 2x) particle

current jN and instantaneous energy ε(t) are plotted. (b) The density entropy used to check that the transient has

been correctly identified (c) The local temperature determined in two different ways, leading to comparable results,

up to a time delay in the quasi-equilibrium regime due to the initial transient.

The ratio is then averaged over all eigenvalues of logρS(t) in the largest subsector of the density

matrix, in order to obtain the best statistics. This determination of β relies on two assumptions:

1. The effective Hamiltonian Heff has a time-independent spectrum in the quasi-equilibrium regime

2. One temperature β(t = 0) is known exactly

The second assumption is needed in order to recover an instantaneous temperature

βRDM(t) =
β(t)
β(t0)

× β(t0), (6.41)

where the ratio is determined using Eq. (6.40). But it has been shown that the initial microcanonical

state has a well defined temperature β(t = 0), used as a meter. The initial distribution of the RDM

eigenvalues λi(t = 0) is saved for the ratio computation (6.40) at later times.

The small variation between the two ways to determine the temperature is due to finite-size effects.

The initial nonequilibrium transient causes a delayed response of the subsystem with respect to the

parent state. Considering bigger system sizes the difference can be reduced.
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6.6 Random Matrix Theory analysis of the RDM

In Section 1.2, we introduced RMT as a powerful tool to analyze the global properties of a Hamiltonian,

in particular as a parameter-free estimator of complexity or integrability. However, never before had

RMT been turned to the study of the entanglement Hamiltonian of a strongly interacting subsystem.

This was partly due to the lack of access to the exact dynamics of the RDM with any method other than

ours.
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Figure 6.9: Integrated spacing distribution I(s) of the unfolded spectrum of log(ρ) of an integrable system: in

the initial microcanonical state |ψ〉E , in the quasi-equilibrium evolution during driving (F = 0.1), and in the

non–thermal steady state after quenching the flux (Quench). The inset is a zoom in the low–gap regime.

For the quasi–thermal states of the subsystem, ρS(β) ∝ exp(−β Heff) and the statistics of the

eigenvalues λi of log(ρ) should match the level statistics of the effective Hamiltonian. We selected a

half-filled configuration of the total system in order to have access to better eigenvalue statistics, due

to the larger global Hilbert space. The eigenvalue statistics is determined for the largest accessible

subsystems of M = 12 sites and N = 6 fermions, containing 924 levels. As stressed in Section 1.2.2, it is

important to select irreducible operators to perform the statistical analysis. Mixing two independent

matrices trivially leads to Poissonian distribution, characteristic of uncorrelated subspaces, without

providing any information.

The spectrum {λi} of log(ρ) is unfolded according to the procedure outlined in Section 1.2.1 on

page 13, mapping the eigenvalues to an ordered set with uniform average density x i . The size of the

largest sector of the RDM is smaller than the Hamiltonians typically used in RMT, so more care is needed

to prevent artifacts from spoiling the results, and to this end 15% on either end of the spectrum was

discarded.

We study in the following two standard quantities characterizing the statistics:

a) Level-spacing distribution P(s), the probability of having difference s = x i+1 − x i between two

unfolded eigenvalues
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Figure 6.10: Level number variance Σ2(δ) of the unfolded spectrum of log(ρ) of an integrable system. The RDM

is analyzed in the same conditions as in the previous Fig. 6.9, with lines showing the expected RMT results.

b) Level number variance Σ2(δ) defined as the variance of the number of unfolded eigenvalues in an

integer interval of length δ

Σ2(δ) =



(x i+δ − x i −δ)2
�

x i
(6.42)

averaged over all possible intervals starting at each x i .

P(s) and Σ2(δ) characterize local correlation properties of the spectrum and long-range level

correlations, respectively. The numerical results for log(ρ) can be compared with the results of the RMT

for the GOE or GUE ensembles [BFF+81,GMW98]. In order to reduce the effect of random fluctuations

on the spectrum distribution, instead of comparing the spacing probability density P(s) (given for all

distributions on page 13), we use the spacing cumulative distribution function I(s). It is the probability of

an unfolded spacing x i+1 − x i being less than s. The analytical form of the distributions is approximated

by the Wigner’s surmise [Haa01,Meh04]

IGOE(s)' 1− exp

�

−
πs2

4

�

(6.43)

Σ2
GOE(δ)'

2
π2

�

log(2πδ) + γ+ 1−
π2

8

�

(6.44)

IGUE(s)' −
4s
π

exp

�

−
4s2

π

�

+ Erf
�

2s
p
π

�

(6.45)

Σ2
GUE(δ)'

1
π2
(log(2πδ) + γ+ 1) , (6.46)

where γ' 0.577 is Euler’s constant and Erf is the error function. Note that Hamiltonians of many–body

integrable systems have the Poisson distribution with IP(s) = 1− exp(−s) and Σ2
P(δ) = δ, while generic

non–integrable systems with the time–reversal symmetry are expected to follow GOE statistics. Only

cases breaking the time–reversal symmetry should result in the GUE statistics.

We have shown in the previous sections that for generic, non-integrable systems in (quasi-)equilibrium,

ρS of any subsystem is well described by a Gibbs distribution. The spectrum of log(ρ) for the initial

microcanonical thus trivially follows the predictions of the GOE in both the I(s) and Σ2(δ) statistics. It

was expected, since without a flux the time-reversal symmetry is preserved and ρS can be chosen as a

real symmetric matrix.
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In Fig. 6.9 we present numerical data for the integrable system in the initial equilibrium state,

together with the prediction of RMT. Surprisingly, the eigenvalue statistics of the RDM of a subsystem

turns out to be independent of the integrability of the total system. It can be reconciled with intuition

knowing that in a subsystem the conservation laws connected to integrability are broken: particles

can move in and out of the subsystem, energy flows, and higher order operators are all the more not

conserved. Even though the conservation laws are connected with local operators, the result is not

Poissonian, but GOE as supported by a GGE distribution on the subsystem.

On the other hand, under a constant (but modest) field F > 0 or after a sudden flux quench we

find that the statistics turn into GUE. This is the case for the non–integrable systems as well as for the

integrable one, as clearly confirmed in figures 6.9 and 6.10. The GUE statistics at F > 0 is consistent

with the time–symmetry breaking by a finite current within the subsystem. In the case of quenching

the decay of the current is not complete, at least not within an integrable system where the absence of

the current relaxation is a hallmark of a finite Drude weight DN . The integrable systems after a quench

relax into the GGE nonthermal equilibrium state, which in presence of persistent currents is compatible

with the GUE expectations.



Chapter 7

Thermoelectrical phenomena beyond

linear response

We present the realization of the first fully quantum model of a Thermo-Electric Couple (TEC), which we

can drive for long times and at strong fields while following its evolution accurately, uncovering nonequilib-

rium phenomena that have not been previously reported in the literature.

In this chapter, we focus on the thermoelectrical response of a closed system, decoupled from any

thermal or particle external reservoir, where the flow of current is generated by induction. The flow

of charged fermions, as argued in Section 1.5, leads to a coupled flow of energy and heat, which is

clearly seen in an inhomogeneous setup such as a thermocouple. The evolution of the system can be

followed at high temperatures using the computational microcanonical pure-state ensemble, solving the

time-dependent Schrödinger equation to numerical precision, with the methods following those of the

previous chapters.

To investigate local thermal phenomena, we use the Reduced Density Matrix (RDM) introduced in

Chapter 6. This allows us to study the local values for the entropy density, which can be connected to

genuine heating effects for regimes close to the Local Quasi Equilibrium (LQE). The time-dependent

quasi-equilibrium concept introduced in the previous chapter is extended to the case where the local

distribution of observables is governed by a space- and time-dependent local effective temperature,

consistent with a canonical ensemble of any RDM.

The LQE persists beyond the limits of LR, below the strong field regime however. The latter is

marked by the appearance of Bloch Oscillations (BO) of the particle and energy currents, which in this

inhomogeneous setup lead to potentially observable oscillations in the particle and energy densities.

7.1 Thermocouple setup

The thermoelectric couple we model is built out of two correlated metallic nanowires with opposite

doping. We chose the spinless fermion ring already studied in detail in the previous chapter, with an

additional site-dependent potentials εi to model the doping of the two arms of the TEC. The Hamiltonian

is the one shown in Eq. (5.9), and repeated below:

H(φ) =
∑

l

Hi(φ)

Hi(φ) =
�

−th eiφ c†
i+1ci +H.c.

�

+ V ñi ñi+1 +
1
2

W (ñi−1ñi+1 + ñi ñi+2) +
1
2
(εi ñi +εi+1 ñi+1) , (7.1)
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with constant repulsion coefficients V and W , hopping constant th and PH-symmetrized number operators

ñi = c†
i ci −

1
2 . Due to the inhomogeneity of the doping, it is crucial to use a correctly defined support for

the nearest-neighbor interactions (see Fig. 5.1) and a consistent definition for the energy current J E ,

which we take to be Eq. (5.16). The particle current is unaffected by the additional local potentials and

it is given by Eq. (5.5).

HOT

COLD

jN

jN

jE

jE
jE

jE

particle-hole
transformation

Figure 7.1: Sketch of a TEC: the two colors represent different dopings, respectively positive and negative, with

the directions of the currents marked on the drawing.

The TEC is modeled in a way to maintain maximum reflection symmetry between the two components:

the system is at half-filling with N = L/2, with the antisymmetric local potentials εi = −ε0 for i ≤ L/2

and εi = ε0 for L/2 < i ≤ L, respectively. The first half is thus negatively doped and has an average

occupation above half-filling, and vice versa. Such a choice means that the carriers in the wires are

of opposite character, i.e. they are electrons and holes. The statement is proven by demonstrating a

particular particle–hole transformation PHZ, which specularly maps the two-halves into each other, as

shown in Fig. 7.1. It is a mixture of the PH and Z operations introduced in Section 1.1.1,

ci
PHZ
−−→ (−1)ic†

L+1−i . (7.2)

The symmetry is exact for all times and values of the field φ, if it holds for the initial state |ψ(0)〉1. This

means that the concentration of fermions on one side of each junction is the same as the concentration

of holes on the other

〈ni 〉=



c†
i ci

�

=



cL+1−i c†
L+i−1

�

= 1− 〈nL+i−1 〉 . (7.3)

The other symmetry is the inversion with respect to the middle of TEC: ci → cL/2+1−i , φ→−φ.

This explains how the polarity of the TEC can be inverted by reversing the driving field F(t) = − dφ(t)
d t ,

which leads to a swap of the hot and cold junctions. We will drive the TEC with a dc field F(t) = const> 0

unless stated otherwise, and the quench protocol will not be employed.

1It holds for the Hamiltonian and the transformations generated by it, such as the infinitesimal e−iδt H(t).
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The expectation values of JN are symmetric with respect to the PHZ transformation (7.2)

jN
i = jN

L+1−i , (7.4)

but the values of the energy current J E change sign at the junctions

jE
i = − jE

L+i−1 (7.5)

This means that if any energy current flows, at one junction it will be directed inwards, while at the

other it will be necessarily flowing out. The actual signs are determined by the doping and the direction

of the current at the level of LR response, but it can be dynamically reversed by strong fields in the Mott

insulating regime, as seen in Section 7.5.

Using the RDM of all of the subsystems of the TEC, scanned sequentially using the algorithm detailed

in Section 6.1.2, a map of local properties of the operating TEC can be obtained for arbitrary fields

and times. From the RDM the local densities of energy εi(t), entropy si(t), and particles ni(t) can be

obtained, and linked to the local effective temperature βi(t) in the LQE regime.

Due to the balance of 〈ni 〉 = 0.5 of the occupation–number at the junctions following from Eq. (7.3),

the density of fermions cannot increase in time. Any increase in the entropy density si(t) cannot be

thus attributed to an influx of particles, but to genuine heating effects. The antisymmetry (7.5) of jE
i

implies that the divergence ∇ jE
i is largest in magnitude at the junctions, which together with the energy

continuity equation

d
d t
〈Hi 〉+∇ jE

i = F jN
i , (7.6)

imply a maximum increase in the local energy at the junctions, which is the main effect behind the

operation of the TEC. The right-hand side of the equation represents a local source of heat due to the

Joule effect and it is homogeneous across the system. For weak fields however, the Joule heating is

proportional to F2 (since in LR jN ∝ F), but the inhomogeneous term ∇ jE
i is linear in F (since jE

i ∝ F).

7.2 Weak field and LR

After preparing the equilibrium state |ψ(0)〉 = |ψE〉 with the microcanonical method, corresponding

to an initial inverse temperature β = 0.3, we drive the system. For the moment we construct the arms

of the TEC by chains in the metallic generic (non-integrable) phase, with L = 26, N = 13, V = 1.4,

W = 1.0 and ε0 = 1.4. To see the effects of the operation of the TEC, we map the density entropy si

using the RDM of subsystems of size M = 4. The RDM for such a subsystem is the partial trace over the

remaining sites B of the ring

ρi(t) = TrB |ψ(t)〉〈ψ(t)|, (7.7)

with the entropy density given by si(t) = Si(t)/M , where Si(t) is the entanglement entropy of the M−site

subsystem ρi(t), Si(t) = Tr[ρ(t) logρi(t)]. The entropy Si(t) is calculated using all the fermion–number

subsectors of ρi(t).
The effects of the TEC are clearly visible at the junctions in Fig. 7.2, the cold junction (c) at

i = L/2= 13 where the entropy is decreasing, and the junction (h) we dubbed hot at i = 26 due to the

additional heating.

Support for the interpretation as due to genuine heating/cooling comes from Fig. 7.3, showing the

difference ∆Shc between the total entropies for subsystems covering the junctions. Initially, the results
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Figure 7.2: Increase of the entropy density si(t) from the initial value si(0) due to the operation of the TEC. The

white contour denotes the region where the value is equal to the starting density. The junctions around L/2= 13

and L = 26 are clearly visible. (a) F = 0.2 (b) F = 0.4. For higher fields, the time scale is reduced.

are independent of M , showing that the effect is completely local, consistently with the Peltier heating.

The entropy production at each junction is proportional to the generated heat:

Ṡjunction =
Q̇
T
= β Q̇ = −β∇ jQjunction = 2β jQjunction, (7.8)

where the divergence at the junction ∇ jQj = jQj+1 − jQj = 2 jQj+1 simplifies to due to jQj+1 = − jQj . The

heat production is due to the heat current, and consequently proportional to the particle current via

jQ = Π jN . The Peltier coefficient at high temperatures can be approximated by Heikes’ formula, since

the chemical potential2 satisfies µ∝ T , when T →∞:

Π=
jQ

jN
=

jE

jN
−µ

µ→∞
−−−→ −µ. (7.9)

A rough local estimate is µi ' εi = ±ε0. Both junctions at t = 0 are at the same temperature β(0) and

the effects are symmetrical, thus the difference between the entropies at the hot and cold junctions is

∆Shc = Sh(t)− Sc(t)≈ 4β(0)

∫ t

0

ε0 jN (t ′) dt ′, (7.10)

in perfect agreement at initial times with the results of Fig. 7.3.

7.2.1 Local Equilibrium regime

The evolution of the TEC for weak fields is consistent with a local quasi equilibrium, where the local

density matrix ρi is found in a canonical Gibbs distribution set by the local inverse temperature βi(t),
which varies in time and space. At every point of the system

ρi(t)∝ exp[−βi(t)Heff(i)], (7.11)

where the density matrix further decomposes into blocks with fixed particle number. The spectrum {λi}
of the effective Hamiltonian Heff is independent of β , and the details of the driving of the system only

affect the macroscopic thermodynamical constraints through βi(t).
Although for small subsystems Heff may significantly differ [KGK+14,HSRH+15] from H, one may

still estimate βi(t) without specifying explicit form of Heff(i). The algorithm was detailed in Section 6.5:

2Using the Maxwell relations, µT =
�

∂ S
∂ N

�

V,T , so the ratio must be finite at all temperatures
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Figure 7.3: Growth of the entropy difference ∆Shc between the junctions, driven with F = 0.2, over subsystems

with M = 2,4,6 respectively. The entropy difference is compared with the LR estimation using Heikes’ formula

(7.10).

the eigenvalue distribution of the RDM is sampled at the initial uniform temperature βi(0) = β(0) to

determine the eigenvalue distribution λm,i(0) of logρi(0). The eigenvalues at later times λm,i(t) are

used to determine βi(t), knowing that

βi(t)
βi(0)

=
λm,i(t)−λ1,i(t)

λm,i(0)−λ1,i(0)
. (7.12)

The results are averaged over all eigenvalues m≥ 2 on each site to provide a better estimate.
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Figure 7.4: Effective temperature away from the junctions, at the point L/4= 6, for a system driven with F = 0.2

and ε0 = 1.2. (a) The effective inverse temperature as a function of the subsystem size M (b) The entropy

determined by the direct measure on the subsystem ρi(t) (solid) compared with the second law estimate (7.13)

using the local density of energy and the temperature defined in Eq. (7.12).

Fig. 7.4(a) shows the resulting βi(t) for the subsystem in the middle between hot and cold junctions.

Being almost independent of M , β is a well defined intensive quantity.

Furthermore, the consistency of the our local definition of the temperature is strengthened by

demonstrating that β is consistent with the 2nd law of thermodynamics. In Fig. 7.4(b) we compare

si(t)− si(0) determined directly from ρ with the integral

si(t)− si(0) =

∫ ε(t)

ε(0)
dεi βi(ε), (7.13)
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where εi(t) = 〈Hi(t)〉 is the energy density in the subsystem. Both quantities are very close to each

other, with the same small shift observed for homogeneous systems in Section 6.8 on page 102.

This consistency of the LQE approach breaks down only for subsystems covering one of the junctions,

where the details of the average over the sites becomes significant. The snapshots of the temperatures

Ti(t) = β−1
i (t), across the whole system at three different times, are plotted in Fig. 7.5. Clearly visible

is the temperature gradient, however an asymmetry in the change of Ti is present at the junctions. The

asymmetry gradually decreases for smaller fields, so we attribute it to heating effects. The effect of the

passage of time is a gradual overall raise in the effective temperature due to the Joule heating.
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T
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Figure 7.5: Normalized temperature profiles across the TEC over subsystems M = 4 wide, driven with a field

F = 0.2 and ε0 = 1.2.

7.2.2 HTE for the particle number

Position-dependent observables can also be compared with the HTE expectation values, in order to

validate the LQE hypothesis. Using the Hamiltonian (7.1), we employ the HTE for the expectation value

of the particle density 〈 ñi 〉. According to the HTE,

〈 ñi 〉= 〈 ñi 〉∞ − β(〈 ñi H 〉∞ − 〈H 〉∞ 〈 ñi 〉∞) (7.14)

but 〈 ñi 〉∞ = 0 at half-filling (HF). The only surviving term of the above equation, is the local-potential

term of the Hamiltonian contracted with ñi:
*

ñi

∑

j

ε j ñ j

+

∞

= 〈 ñ1 ñ2 〉∞
∑

j 6=i

ε j + εi




ñ2
1

�

∞ = εi

­

ñ1 ñ2−
1
4

·

∞
. (7.15)

To simplify the expression above, we used that the sum
∑

i εi = 0, so
∑

j 6=i ε j = −εi . Even powers

of ñ on the same site yield a constant expectation value, e.g.



ñ2
i

�

∞ =
1
4 . All odd powers of ñ on

different sites vanish (〈 ñ1 ñ2 ñ3 〉∞ = 0), whereas 〈 ñ1 ñ2 〉∞ = −
1
4

1
L−1 at half-filling. Finally, the particle

occupation number is

〈 ñi 〉= −β
�

〈 ñ1 ñ2 〉∞ −
1
4

�

εi =
εiβi

4
1

1+ 1/L
, (7.16)

in perfect agreement with the results shown in Fig. 7.6 for ni(t) = ñi(t) + 0.5, where we averaged εi

over all M sites of the subsystem to generate the prediction.

Strong particle currents flowing in inhomogeneous systems can cause a redistribution of the carriers

in the TEC. However, the strong PHZ symmetry from Eq. (7.2) implemented throughout the operation
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Figure 7.6: Particle occupation profile (points) over a subsystem with M = 4, together with the HTE prediction

(lines), for the whole TEC at two different times. Field F = 0.2 and ε0 = 1.2.

of the system prevents this from happening. The particle density is determined solely by βi(t) and the

time-independent εi , playing the role of the chemical potential in the HTE expansion.

The constraints on the fermion density prevent a flow of particles to the junctions which would

increase the entropy density, without being a contribution to the heating. The nonequilibrium density of

particles could serve as an additional thermodynamical force, which can oppose the operation of the

TEC, as seen in the following section.

7.3 Long time operation of the TEC

In the short-time regime, all curves for the entropy difference at the junctions ∆shc merge if plotted

as a function of F t for various drivings, as shown in Fig. 7.7(a). Due to the closeness of the system, the

heat accumulated by the Joule effect uniformly raises the temperature, leveling the differences induced

by thermoelectrical effects and stopping the flow of the currents for t > 0. The entropy difference is
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Figure 7.7: Joule heating seen as a leveling of the entropy difference at the junctions in time. The system is driven

with different fields F = 0.2, F = 0.3, F = 0.4. (a) The overall temperature increase (b) The exponential decrease in

∆shc with a time constant proportional to F2 seen on the semilogarithmic scale.

exponentially decaying for longer times proportionally to e−a F2 t , with a decay constant ‘a’ independent

of the field, as seen in Fig. 7.7(b). The decay of the particle current jN in time is identical.
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Figure 7.8: Results for M = 4, F = 0.2 and ε0 = 1.2. (a) The system is driven continuously (b) The electric field is

switched off at t = 15. The plots show the time profile of jN and jE between the junctions (at i = 3
4 L), and the

entropy difference ∆shc .

The heating effects are consistent with the picture of a temperature rising uniformly due to the Joule

effect, as analyzed by means of the RDM in Chapter 6 and by the estimate of a temperature-dependent

dc conductivity σN (β) in Chapter 5 (see Fig. 5.4).

Another surprising property of the long time regime can be inferred from Fig. 7.8(a) that shows

jN and jE in the middle of the left part of TEC, far from the junctions. Initially, both currents show

similar time–dependence, however jE vanishes for t > 10 while jN remains large. In order to explain

this nonlinear effect we recall that in the linear-response local-equilibrium regime the currents can be

driven by two independent forces: F and ∇β . A particular combination of these forces may cause the

vanishing of jN (Seebeck effect) or jE (present case). In order to explicitly show that the vanishing of

jE originates from compensation of two forces we instantaneously switch off one of them: the electric

field, the only we have complete control over. As shown in Fig. 7.8(b), the remaining force drives jE in

the opposite direction.

The particle–hole symmetry implies that either jE vanishes or ∇ jE ∝ F is large at the junctions. As

follows from Eq. (7.6), the latter possibility would preclude the quasi-stationary evolution of an isolated

TEC. In case of open systems we expect only partial compensation of driving forces in a stationary

state which diminishes the efficiency of heat pumping under a strong driving. The cancellation of the

energy current is unexpected, but not contradictory with the phenomenology of the Peltier effect: the

latter is typically derived under the uniform-temperature boundary condition ∇β = 0, which precludes

the thermodynamical flux from interfering and the effects of the Joule heating to hinder the transport

efficiency.

7.4 Strong field Bloch oscillations

Strong fields have been shown to destroy the quasi-equilibrium regime in homogeneous systems and

produce Bloch oscillations.

The operation of the TEC is similarly disrupted under strong F . The first nonequilibrium effect

concerns the magnitude of F which destroys the LQE. Since the TEC is spatially inhomogeneous,

different conditions can lead to the persistence of the local equilibrium in certain parts of TEC while

being destroyed in others, as it is the case of the hot and cold junctions. We have tested the equilibrium

relations by comparing observables calculated in the canonical ensemble with local observable densities
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Figure 7.9: Results for M = 4, F = 0.2 and ε0 = 1.2. (a) The system is driven continuously (b) The electric field is

switched off at t = 15. The plots show the time profile of jN and jE between the junctions (at i = L/4), and the

entropy difference ∆shc

and checked that the same relations are satisfied, following the procedure outlined in Section 6.3. In the

LQE regime, intensive quantities including si(t) and εi(t), are uniquely determined by βi(t), establishing

a monotonic relation between the three.

The universal relation, analogous to Eq. (6.30), is confirmed for F ≤ 0.4 for the cold and hot

junctions, in figures 7.9(a) and 7.9(b) respectively. In the former case the curves for weak F merge

during the entire evolutions, while in the latter case it happens only in the long–time regime after the

nonequilibrium transient. It can be observed that the local equilibrium relations are broken first at the

hot junction, where the thermal effects play a greater role, as seen in Fig. 7.5. For large F , εi(t) starts

to oscillate, while oscillations of si(t) are rather limited. Therefore, the equilibrium relation between

εi and si is broken as early as when the energy current jE
i (t) begins to undergo the Bloch oscillations.

Conversely in homogeneous half-filled systems the limits of nonequilibrium evolution are signaled by

the Bloch oscillations of the particle current jN
i (t) [Fre08,EW11,ECP14].

Although in homogeneous systems jN
i and jE

i may Bloch oscillate, the densities of particles and

energy still do not show any oscillatory behavior. The oscillations of the density are connected by the

continuity equations to the gradient of the currents

d
d t
〈Hi 〉+∇ jE

i = F jN
i and

d
d t
〈Ni 〉+∇ jN

i = 0. (7.17)

In homogeneous systems the currents are translationally symmetric and ∇
¬

JN(E)
j

¶

= 0. Conversely

in the TEC, large gradients of the currents are present at the junctions, thus leading to oscillations in

ni(t) and hi(t) shown in Fig. 7.10. The oscillations are particularly strong at the cold and less visible at

the hot junctions, due to thermal effects. The energy density oscillations in panel (b) are only positive

across the cold junction due to the symmetry requirement, whereas the particle number oscillations in

panel (a) are antisymmetric and display both signs.

The presence of Bloch oscillations of the currents is a phenomenon expected in all tight-binding

models driven by strong fields, as already shown in Section 5.5. The density Bloch oscillations have not

been previously observed, due to the necessary homogeneity of systems needed for the experimental

and numerical realizations. Given the derivation above, grounded in the continuity equations and the

bandwidth limitation of tight-binding Hamiltonians, the density oscillations are expected at the junctions

of composite realistic systems in the quantum regime.



CHAPTER 7. THERMOELECTRICAL PHENOMENA BEYOND LINEAR RESPONSE 115

0 10 20
t

6

11

16

21

26

ñ
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Figure 7.10: Results for M = 4, and ε0 = 1.2, driven with a strong field F = 3.2. (a) Particle density variation

relative to the initial state (b) Local energy density with respect to the initial value.

7.5 Dynamical reversal of the Peltier response in strong fields

After investigating models of the TEC built out of two differently doped featureless metals, we turn

to the case of two doped Mott insulators. At half-filling, when W < V , for interaction strengths V > 2

the ground state of the system is an insulator, as mentioned in Section 1.1.3.

We tune the interaction constant from V < 2 to V > 2 in Fig. 7.11(a). At short times, the LR Peltier

response is visible, and the entropy difference at the junctions ∆shc is independent of the interaction

strength V as per Eq. (7.10). For longer times t > 5, tuning V reverses the dc flow of the entropy and

interchanges the role of the junctions. The effect is expected, being due to switching the charge carriers

from electrons in the metallic regime, to holes in the Mott-insulating phase. Unexpected results are

5 15 25 35
t

−0.02

0.00

0.02

0.04

∆
s

h
c

V=1.4

V=3 V=4

V=5

a)

W=1, F=0.2

10 30 50 70
t

−0.01

0.00

0.01

0.02

∆
s

h
c

F=0.4

F=0.6
F=0.8

F=1.0

b)

V=4, W=1

Figure 7.11: Difference ∆shc in the entropy density between the two junctions h = 26, c = 13. (a) TEC driven with

a constant field F = 0.2, as V is varied from the metallic (V = 1.4) to the insulating phase (V > 2) (b) Strong Mott

insulating phase with V = 4, W = 1, driven with fields from F = 0.4 to F = 1.0.

obtained in the insulating phase, seen in Fig. 7.11(b). Under strong driving, the TEC operates in the

same way as seen for generic metals, i.e. the current is carried again by electrons. The breaking of
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Figure 7.12: Difference ∆shc in the entropy density between the two junctions h = 26, c = 13. (a) TEC driven with

a constant field F = 0.2, as V is varied from the metallic (V = 1.4) to the insulating phase (V > 2) (b) Strong Mott

insulating phase with V = 4, W = 1, driven with fields from F = 0.4 to F = 1.0.

the insulating ground state by strong fields has been investigated in the framework of Landau-Zener

transitions from a dispersionless ground state to a dispersionful excited state. However, the present

case involves highly energetic states of a doped Mott insulator, where the energy density is finite and a

continuum of states exists.

The objection that this is due to heating effects has been raised, explaining away the inversion as

being the result of a faster increase in the energy at higher F . We have explicitly ruled out this scenario,

by comparing the average energy of the system to the entropy difference at the junctions ∆shc , in

Fig. 7.12. A Mott insulator with V = 4 is driven with two different fields, F = 0.6 and F = 0.8. Waiting

a sufficient time for the systems to reach the same energy 〈H 〉 ≈ −8, the Peltier response is still reversed

for the two fields. It is thus possible to control the direction of the flow of heat by changing F alone,

which is a truly nonequilibrium phenomenon, with a probable entropic origin still eluding a complete

explanation.

7.5.1 Finite-size scaling

Finally, we provide support in Fig. 7.13, that the nonequilibrium phenomena treated in this Chapter

are well defined quantities in the L� 1 limit. The scaling of βi(t) away from the junctions in panel (a)

shows differences of similar magnitude as the scaling by M , confirming the significant of the temperature

measurable we have defined. The time necessary for zeroing of the energy current in panel (b) does not

scale with L, proving that the effect can be seen in systems in the thermodynamical limit. The Bloch

oscillations at the junctions in panels (c) and (d) do not show any dependence on the system size, as

the oscillations merely follow the external field and the microscopical details have limited effects. The

Peltier effect reversal due to strong fields in panels (e) and (f), on the other hand shows even-odd effects,

due to the parity of the site c = L/2.
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Figure 7.13: (a) Scaling of βL/4(t) with respect to L with data from Fig. 7.4 (b) Interruption of the flow of jE
L/4 due

to balancing of thermodynamical fluxes from Fig. 7.8 (c) and (d) Particle and energy density oscillations at the

junctions driven by strong fields, as in Fig. 7.10 (e) and (f) Reversal of the Peltier response ∆shc in a V = 4, W = 1

Mott insulator between the driving with F = 0.6 and F = 0.8 respectively, using the setup of figures 7.11 and 7.12



Chapter 8

Results

Over the course of this Dissertation, a one–dimensional ring of interacting spinless fermions has been

presented in its static and dynamical properties under driving, in the integrable and generic regime, in

the metallic or insulating phase. The system was studied starting with its equilibrium, by introducing

computational ensembles for the calculation of observables in thermal equilibrium, to the extreme

nonequilibrium regimes where the quantum Bloch oscillations disrupt the ordered transport. In between,

the quasi–equilibrium regime, where the local observables can be described by an effective temperature,

is observed and compared to the linear response framework.

The original results are summarized below, divided by the corresponding Chapter.

Chapter 5.

The equilibrium thermodynamics of the system was established by presenting all the necessary

computational methods to calculate arbitrarily complicated observables at any temperature in the

range T ∈ [0,∞]. This was preliminary in order to determine the frequency–dependent conductivities

σN(E)(ω), which control the system response to a vanishing externally–applied electrical field. Known as

the Linear Response (LR) regime, it provides a benchmark for the finite–field response. The imaginary

part of the off–diagonal correlation function Im C>E (ω) required the development of a new projection

method in Krylov space in Section 2.4 to calculate accurately the response directly in the spectral domain.

The time–dependent external magnetic field inductively generates a flow of currents in the system,

leading to the transport of charge and energy throughout the system. The expression for the energy

current operator J E , fully respecting the combined system symmetry PHZ, was derived in the general case

when the interaction parameters vary arbitrarily between sites, allowing precise site–wise measurement

of the observable in Section 5.1.

The flow of the current in presence of a nonzero external field is countered by an electrical resistance

growing with the temperature, and the dissipation increases the energy of the system even in integrable

cases. The Joule effect is the source for the energy dependence of the dc response, which is the leading

effect beyond LR, and the energy–dependent response of the energy current is shown in Section 5.3.

Under dc driving by a nonzero electric field F , the long–time ratio of the energy current ( jE) and

the particle current ( jN ) values was shown to recover the LR results in the weak–field limit of driven

nonintegrable systems, validating the more versatile real–time approach in Section 5.4. Going beyond

the linear regime is needed for ballistic systems, as the equilibrium LR theory predicts singular responses

of both currents, quantified by the stiffnesses DE and DN , respectively. Since jE is a conserved quantity
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(at F = 0), DE represents simply the stress coefficient. However, jN is not conserved and the physical

origin of a finite DN is more complex.

We have first considered a system (doped insulator) where the local conserved quantities saturate

the Mazur bound on DN . In this case the long–time results for R(t) = jE(t)/ jN (t) agree with the LR

ratio DE/DN , despite the currents themselves are steady or oscillating in contrast to the LR prediction

jN(E)∝ F t, in Sections 5.5 and 5.6.

We have then studied a metal close to half–filling in Section 5.7, where the large DN cannot be

explained by the Mazur bound formulated in terms of local conserved quantities. On the one hand,

the ratio jE(t)/ jN (t) obtained for a system which relaxes after a flux–quench (δ–like pulse of electric

field) nicely agrees with the LR theory. On the other hand, jE(t)/ jN (t) obtained for a steady driving

becomes much larger than the LR value DE/DN , reaching the value predicted using the Mazur bound.

The driving by a field reduces the coupling of jN to conserved currents other than jE , enhancing the

ratio R(t) greatly beyond the LR bound.

Chapter 6.

Using the Reduced Density Matrix (RDM), detailed in Section 6.1, of the subsystem offers the

possibility to study the case at the foundations of statistical mechanics, in a nonequilibrium setting: the

dynamics of a small system interacting (albeit strongly) with a much larger, in the number of degrees

of freedom, bath. The dynamics is projected directly from the accurate evolution of the whole state of

the system, thus it is not constrained to the Markovian second-order perturbative approximation that

hinders the Lindblad equation. Systems strongly interacting with their environment cannot be modeled

by the latter approach, as the subsystem and the environment have similar correlation times, and the

secular approximation1 fails.

The RDM evolution is a useful tool to investigate nonequilibrium properties of any system, and

our results concern mostly the unknown behavior of a metallic integrable ring. The thermalization of

integrable system is prevented by the existence of local conserved operators. However, when the system

is driven, those conservation laws are broken. As shown in Section 6.3, the observables defined on the

subsystems finally attain their thermodynamical values.

Subsystems of an integrable systems have been shown in Section 6.4 to approach a locally thermal

state, according to the hypothesis of canonical typicality: the local state is constrained to ρS ∝ e−β(t)Heff ,

with an a priori unspecified local Heff. The spectrum of log(ρS) thus contains information useful for

identifying the quasi–thermal, steady non–thermal, and the non–equilibrium regimes. For the case of

quasi–thermal states, which are realized also for finite but modest driving, we have demonstrated that

the effective inverse temperature β (see Section 6.5) as the only relevant parameter determines the state

of ρS , for states evolved from thermal states. This result sets straightforward limits on the relaxation of

integrable systems, but more importantly, it confirms the nontrivial concept of the subsystem effective

Hamiltonian Heff, which is shown to be independent of the temperature and initial conditions.

The entropy density introduced on the RDM in Section 6.1.1 is an invaluable tool to monitor the

approach to the thermal state, which is defined as the maximum entropy state under the constraint of

conservation of energy. Integrable systems after a quench do not thermalize, resulting in an entropy

deficit compared to canonical state. The convexity of the entropy density sets the threshold of the

quasi–equilibrium evolution after the initial nonequilibrium transient. The density is a quantity directly

related to the heating of the system, which we have shown to follow the second law of thermodynamics

1Infinitely short coherence time of the bath.
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for systems not performing any work.

For the first time, the RMT analysis was applied to the RDM spectrum instead of the global energy

operator. The results from Section 6.6 based on the spectral statistics of the RDM reveal a universal

conclusion: subsystems of a system in equilibrium obey the GOE eigenvalue statistics. This is the case

regardless of integrability of the whole system, even when the global Hamiltonian operator obeys Poisson

statistics. The subsystems of the driven system and systems quenched with a field pulse follow the GUE

universality, although the model by itself does not break the time–reversal symmetry. For the quenched

integrable system, the state reached is the GGE, or maximum entropy state with the finite-current

constraint, towards which the relaxation is effectively irreversible as shown by the transition from

Poissonian to GUE statistics.

Chapter 7.

Thermoelectrical effects are more evident in inhomogeneous systems, where they were historically

observed for the first time. The typicality approach can be easily extended to a quantum thermo-electric

couple, where the arms are modeled (Section 7.1) by two inversely doped materials at high temperatures.

The intensive thermodynamical potentials can vary in such a system, so we have introduced the concept

of local quasi-equilibrium, parametrized by a spatially varying effective temperature βi(t), defined from

the local Gibbs state of the RDM.

The reflection and particle-hole symmetry relate the two halves of the system, guaranteeing that the

particles do not accumulate at the junctions, and that the energy flows from one junction to the other

under the driving field, giving rise to the Peltier effect.

When the system is slowly driven from a uniform–temperature state, as shown in Section 7.2, the

gradient of the energy current ∇ jE at the junctions is maximal, leading to a time–dependent energy

density, which increases at the hot (h), and decreases at the cold (c) junction. For t → 0, the difference

in the entropy density between the junctions ∆shc ∝ F follows the LR relation for the Peltier effect at

high temperatures, independently of the analyzed junction size M . Using the effective local temperature

Ti(t) = β−1
i (t) we can show that a gradient forms between the junctions, where discontinuities arise.

For short times, all observables in the TEC follow the local equilibrium values, albeit with an exponential

time dependence in βi(t) due to the Joule effect which is beyond the LR regime.

In a driven closed system, we have shown that the energy increase opposes the flow of the currents.

The uniform Joule heating thus blurs the response of the TEC, which exponentially vanishes as e−aF2 t .

Moreover, the continuity equations imply the nonstationarity of the energy whenever the gradient∇ jE is

nonzero. Already at short times, the system reaches a stationary state by producing a balancing nonzero

thermodynamical flux (i.e. the temperature gradient), which opposes the flow of the energy current,

which abruptly vanishes away from the junctions. We have been able to show this explicitly in Section

7.3, by zeroing the other thermodynamical flux: the electrical field. The remaining gradient is released

in the form of a flow of energy with opposite sign.

Strong fields in homogeneous systems produce Bloch oscillations of the currents, which are however

translationally invariant. In the TEC, the Bloch oscillations in ∇ jN and ∇ jE , strongest at the junctions,

couple to oscillations in the density of energy and charge, seen in Section 7.4. The strong variations in

the densities at the junctions are then directly observable, an effect that was not previously visible in the

classical description of a thermocouple.

We have observed another intriguing novel effect at strong fields, below the level needed for the

Bloch oscillations, in Section 7.5. The external driving field can dynamically reverse the sign of the
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carriers in a TEC made out of two Mott insulating arms. The effect is a high–temperature dynamical

transition between the insulating state and a metallic behavior, induced by sufficiently strong driving

after a universal transient.
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[LGBP14] Zala Lenarčič, Denis Golež, Janez Bonča, and Peter Prelovšek, Optical response of highly

excited particles in a strongly correlated system, Physical Review B 89 (2014), no. 12,

125123.

[LGK+13] Tim Langen, Remi Geiger, Maximilian Kuhnert, Bernhard Rauer, and Joerg Schmiedmayer,

Local emergence of thermal correlations in an isolated quantum many-body system, Nature

Physics 9 (2013), no. 10, 640–643.

[LJV08] Georgy Lebon, David Jou, and Jose Casas Vazquez, Understanding non-equilibrium ther-

modynamics: foundations, applications, frontiers, Springer, 2008.

[LL69] J. L. Lebowitz and Elliott H. Lieb, Existence of Thermodynamics for Real Matter with

Coulomb Forces, Physical Review Letters 22 (1969), no. 13, 631.

[LL77] L D Landau and E M Lifshitz, Quantum mechanics. Non-relativistic theory , vol. 3, 1977.

[LPE+03] M. Long, P. Prelovšek, S. El Shawish, J. Karadamoglou, and X. Zotos, Finite-temperature dy-

namical correlations using the microcanonical ensemble and the Lanczos algorithm, Physical

Review B 68 (2003), no. 23, 235106.

http://arxiv.org/abs/1506.05788
http://arxiv.org/abs/1506.05788
http://dx.doi.org/10.1103/PhysRevB.90.155104
http://dx.doi.org/10.1103/PhysRevB.90.155104
http://dx.doi.org/10.1103/PhysRevLett.87.236603
http://dx.doi.org/10.1103/PhysRevLett.87.236603
http://dx.doi.org/10.1103/PhysRevB.89.075139
http://dx.doi.org/10.1103/PhysRevB.89.075139
http://dx.doi.org/10.1103/PhysRevB.89.075139
http://www.cond-mat.de/events/correl11/manuscript/
http://dx.doi.org/10.1143/JPSJ.12.570
http://dx.doi.org/10.1143/JPSJ.12.570
http://dx.doi.org/10.1103/PhysRevB.84.054304
http://dx.doi.org/10.1103/PhysRevB.84.054304
http://dx.doi.org/10.1103/PhysRevB.84.054304
http://dx.doi.org/10.1007/BF01304229
http://dx.doi.org/10.1103/PhysRevA.86.013602
http://dx.doi.org/10.1103/PhysRevA.86.013602
http://dx.doi.org/10.1103/PhysRevB.67.224410
http://dx.doi.org/10.1103/PhysRevB.67.224410
http://dx.doi.org/10.1103/PhysRevB.89.125123
http://dx.doi.org/10.1103/PhysRevB.89.125123
http://dx.doi.org/10.1038/nphys2739
http://dx.doi.org/10.1007/978-3-540-74252-4
http://dx.doi.org/10.1007/978-3-540-74252-4
http://dx.doi.org/10.1103/PhysRevLett.22.631
http://dx.doi.org/10.1103/PhysRevLett.22.631
http://dx.doi.org/10.1063/1.3062347
http://dx.doi.org/10.1103/PhysRevB.68.235106
http://dx.doi.org/10.1103/PhysRevB.68.235106


BIBLIOGRAPHY 132

[LPSW09] Noah Linden, Sandu Popescu, Anthony J Short, and Andreas Winter, Quantum mechanical

evolution towards thermal equilibrium, Phys. Rev. E 79 (2009), no. 6, 61103.

[LPSW10] Noah Linden, Sandu Popescu, Anthony J. Short, and Andreas Winter, On the speed of

fluctuations around thermodynamic equilibrium, New Journal of Physics 12 (2010), 2–5.

[LR72] Elliott H. Lieb and Derek W. Robinson, The finite group velocity of quantum spin systems,

Communications in Mathematical Physics 28 (1972), no. 3, 251–257.

[LR14] Nicolas Laflorencie and Stephan Rachel, Spin-resolved entanglement spectroscopy of critical

spin chains and Luttinger liquids, Journal of Statistical Mechanics: Theory and Experiment

2014 (2014), no. 11, P11013.

[LZMG01] Jon Links, Huan-Qiang Zhou, Ross McKenzie, and Mark Gould, Ladder Operator for the

One-Dimensional Hubbard Model, Physical Review Letters 86 (2001), no. 22, 5096–5099.

[MA06] N. Mohankumar and Scott M. Auerbach, On time-step bounds in unitary quantum evolution

using the Lanczos method, Computer Physics Communications 175 (2006), no. 7, 473–481.

[MAAACJ13] J J Mendoza-Arenas, S Al-Assam, S R Clark, and D Jaksch, Heat transport in the X X Z spin

chain: from ballistic to diffusive regimes and dephasing enhancement, Journal of Statistical

Mechanics: Theory and Experiment 2013 (2013), no. 07, P07007.

[Mah00] Gerald D. Mahan, Many-Particle Physics, Springer US, Boston, MA, 2000.

[Mar13] Leonid Martyushev, Entropy and Entropy Production: Old Misconceptions and New Break-

throughs, Entropy 15 (2013), no. 4, 1152–1170.

[Maz69] P. Mazur, Non-ergodicity of phase functions in certain systems, Physica 43 (1969), no. 4,

533–545.

[Maz10] Giacomo Mazzi, Numerical treatment of the Liouville-von Neumann equation for quantum

spin dynamics.
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[ZF12] V. Zlatić and J. K. Freericks, Strongly Enhanced Thermal Transport in a Lightly Doped Mott

Insulator at Low Temperature, Physical Review Letters 109 (2012), no. 26, 266601.

[ZKAHD07] Wenxian Zhang, N Konstantinidis, K a Al-Hassanieh, and V V Dobrovitski, Modelling

decoherence in quantum spin systems, Journal of Physics: Condensed Matter 19 (2007),

no. 8, 083202.

[ZMK+15] Michael P. Zaletel, Roger S. K. Mong, Christoph Karrasch, Joel E. Moore, and Frank

Pollmann, Time-evolving a matrix product state with long-ranged interactions, Physical

Review B 91 (2015), no. 16, 165112.
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