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TH E HARD BREM SSTRAHLUN G IN e+ e“ -»• 4 /  
W IT H  NON-ZERO FER M IO N  MASSES* **

K a r o l  K o ł o d z i e j

Institute of Physics, University of Silesia 
Uniwersytecka 4, 40-007 Katowice, Poland
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An efficient method for calculating polarized matrix elements of the 
four fermion reactions e+e“ —t 4 /  and corresponding hard bremsstrahlung 
reactions with non-zero fermion masses is discussed. The numerical results 
for the total cross sections and some differential cross sections of e+e“ —t 
u d ^ P n  and e+e“ —t u d g ^v llA are given. The dependence on the fermion 
masses is illustrated by comparing the hard bremsstrahlung corrections to 
different semi-leptonic channels.

PACS numbers: 13.40.Ks, 02.70.Lq, 11.80.Cr

1. In tro d u ctio n

The analysis of IU±-pair production at LEP2 and at future high energy 
e+ e“ linear colliders (NLC) requires the knowledge of the precise Standard 
Model (SM) predictions including radiative corrections. Actually, as the 
W  bosons almost immediately decay, the precise predictions for the reactions

e+ e“  -A 4 / ,  (1)

where 4 /  denotes a possible four fermion final state , are necessary. A specific 
final sta te  of (1) can be obtained not only by the production and decay of 
two virtual W  bosons. It also receives a contribution from a single or no 
W  boson exchange, which is sometimes referred to as a non doublv-resonant 
background. The lowest order SM results for reactions (1) including some 
classes of the radiative corrections such as the initial and final sta te  radiation, 
Coulomb corrections, running of the fine structure constant, etc., for all the
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possible four fermion final states have been already implemented in several 
Monte Carlo event generators and semi-analvtic programs which have been 
thoroughly compared in Ref. [1].

A calculation of the complete 0 ( a )  electroweak virtual corrections to 
reactions (1) is a formidable task  which has not been completed yet for any 
of the possible final states. Such a complete calculation was performed for 
the production of the on shell W  bosons in Ref. [2] and later extended to

in the double-pole approximation, see Ref. [7] for the most recent review and 
Ref. [6] for a simple analytic approxim ation in the high energy regime.

Concerning the real photon emission the situation looks much better. 
The hard photon brem sstrahlung to  the on shell W -pair production was 
calculated in Refs. [3] and [4], and to  the four-fermion reactions m ediated by 
two resonant W  bosons (2) in Ref. [8]. The complete lowest order calculation, 
including the non doublv-resonant background, of e+e-  —> e~9eu d j  was 
presented in Ref. [9] and calculations of

with the iterative algorithm ALPHA [10] for an arbitrary  final sta te  were 
reported in Ref. [11]. Results on brem sstrahlung for purely leptonic reactions 
have been published in Ref. [12] and recently predictions for all processes 
e+e-  —> 4 /7  with massless fermions have been presented in Ref. [13].

Presently available e+e-  —> 4 /, 4 /7  m atrix-elem ents are precise enough 
for the analysis of LEP2 data, however, a t the NLC, radiative corrections 
will get more significant. In particular the proper treatm ent of the collinear 
photons will be crucial. It requires to  take into account the fermion masses 
appropriately. Therefore, an efficient m ethod of calculating the hard photon 
brem sstrahlung for four fermion production in e+e-  annihilation w ithout 
neglecting the fermion masses has been proposed in Ref. [14]. W ith the 
non-zero fermion masses, the phase space integration can be performed to 
the very collinear limit, the cross sections can be calculated independently 
of angular cuts, the background contributions coming from undetected hard 
photons can be estim ated, the pole arising when a photon exchanged in the 
i-channel approaches its mass shell can be correctly handled and the Higgs 
boson effects can be incorporated in a consistent way.

e+e-  -+ W + W -  -+ 4 / (2 )

e+e —> 4 /7 (3)



2. M eth o d  o f  ca lcu la tion

The polarized m atrix  elements of any of reactions (1) and (3) can be 
calculated with the use of the m ethod developed in Refs. [3] and [14]. The 
calculation is performed for a given set of external particle m om enta in a 
fixed reference frame, e.g. the centre of mass system of the initial particles, 
where the initial m omenta are parallel to  the z axis. The Dirac matrices 
are chosen in the Weyl representation and the fermion spinors in the helicitv 
basis are used. Fermion masses are kept non-zero. For simplicity photon 
polarization vectors are chosen real. However, complex polarization vectors 
in the helicitv basis could be used instead if one were interested in polarized 
cross sections. The reader is referred to Refs. [3] and [14] for the explicit 
definitions of the spinors and polarization vectors.

It is very useful to  select parts of the Feynman graphs of reactions (1) and
(3) which contain a single uncontracted Lorentz index and define generalized 
polarization vectors. Such a generalized polarization vector is for example 
the coupling of an internal gauge boson to the external fermions

P i, Ai
(P i,P2, A1; A2) (4)

P2i  A2
=  D V (<?bi(Pi, A ib ^  ( 9 v  ]P -  +  g ^ P + j  b ( P 2 ,  a 2),

where b ( p i ,  Ai) and ip? (P2, A2) are spinors of a particle or an antiparticle of 
four-momentum p;, mass m * and helicitv X;, P±  are the chirality projectors 
and are the corresponding couplings, D y  (q) is the vector boson prop­
agator and q =  ± p i  ±  p 2 is the four-momentum transfer. The + ( —) sign 
corresponds to  an outgoing (incoming) particle.

The photon emission from any of the external fermion legs of (4) can be 
taken into account by defining other generalized polarization vectors, e.g.

P i ,  Ai

k X (p i,P 2 , k, A i ,  A2, A)

vo Xo = ^  +  t ' M P h  A i ) g 7 b ( fc ,  A ) mi 2P 2H 2 ( ± p i  +  k ) £ — m \

( g v  ]P -  +  g ^ P + ^ j  b ( P 2, a 2), (5)

where the upper (lower) sign is assumed if represents an outgoing particle 
(an incoming antiparticle), £+(&, A) is the photon polarization vector and g7i



is the photon coupling to The photon emission from the other fermion 
leg of (4) can be represented by a similar generalized polarization vector.

A contraction of the triple gauge boson coupling with two (generalized) 
polarization vectors can be considered as another generalized polarization 
vector, e.g.

where V  =  7 , Z °  and the dependence on four m om enta and polarizations 
of the generalized polarization vectors has been represented by subscripts 1 
and 2.

Similarly the quartic gauge boson coupling contracted with three (gen­
eralized) polarization vectors is also a generalized polarization vector.

Corresponding scalar objects can be dehned for the Higgs boson by re­
placing the vector boson couplings and propagator in Eqs. (4)—(6) by the 
Higgs boson couplings and propagator.

W ith the polarization vectors of Eqs. (4)—(6), an am plitude of any Feyn­
m an graph of e+ e_ —» 4 / ( 7 ) can be w ritten in a simple form without con­
tractions of the Lorentz indices. In order to  illustrate this consider the 
semi-leptonic process

and the corresponding brem sstrahlung reaction

e+ (pi) +  e- (p2) U (p3) +  D (p 4) +  r ( p 5) +  iy(p6) + 7 (^7)- (8)

In reactions (7) and (8), U =  u ,c , t \  D  =  d ,s ,b \  I =  p, r  and the particle 
m om enta have been indicated in the parenthesis. The Feynman diagrams of 
reaction (7) are shown in Fig. 1. The diagrams of reaction (8) can be obtain 
from those of Fig. 1 by attaching an external photon line to  each charged 
particle and to  the triple gauge boson vertex of diagrams (2), (3) in Fig. 1.

-+ 4 . ( 1 ,2) =  D l 4 q) r ^ ; v v HP u P 2 , q) e ^ 2 (6)

=  D ° f(q )g w w v  [{pi - p 2)p £ i-£2 +  (p2 -  <?)•£ 1 e2p 

+  { q  — P i ) ' £ 2 £ ip ] ,

e+ (pi) +  e (p2) -+ U(p3) + D (p 4) +1 (p3) +  vi(jpe) (7)



Fig. 1. The Feynman diagrams of reaction (7)

The necessary generalized polarization vectors are

£7 =  t f ( p i ,P 2 ,  Al, A2) =  D ^ ( p i 2) Vi(p i,  Ai)7i,5>7i'u2(P2, A2), 
£fZ =  £z (pi,P2, Al, A2) =  D z U(pi2) Vl(pi, Al)

( s z i )p -  + 9 (Z 1 P+)  «2(P2, A2),

£+ =  £w+ (P3 , F4, A3, A4) =  (p34) (p3, A3 )7vgw  P  v4 (p4, A4),
£— =  £^V- (F5,F6, A5, A6) =  D ' l ( p m ) u 5(p5, A5 )o[vgw P_ vq (pa, A6) , (9)

where p 42 =  Pi +  P2, P34 =  P3 +  P4 and p56 =  p5 +  p6; 571, and 571/ are 
the SM couplings. The photon propagator Dlfl(q)  is taken in the Feynman 
gauge and the propagators of the massive gauge bosons D y ( q ) ,  V  IF. Z .  
are defined in the unitary  gauge. The constant widths TV, P z  are introduced 
through the complex mass param eters

M y  =  m y  — i m y P y  (10)

in the propagators. The electroweak mixing param eter is kept real, though. 
This simple prescription violates the SU(2) gauge invariance. However, a 
comparison of the to ta l cross sections of reactions (7), (8) with those of 
Ref. [13], which were obtained in different gauge and in the scheme where 
the complex masses of Eq. (10) are used both  in propagators and couplings, 
shows an agreement within the Monte Carlo errors [14]. The agreement 
holds for energies up to 10 TeV which means th a t the unitarity  cancellations 
are not spoiled to  an extent th a t may have been relevant for present and



future experiments. The electromagnetic gauge invariance of (8) is preserved 
for the non-zero fermion masses even if the widths l \ \  and Tz are treated  
as two independent param eters. This has been checked analytically and 
confirmed by the numerical calculation.

W ith the generalized polarization vectors of Eq. (9), the amplitudes cor­
responding to  the Feynman diagrams of Fig. 1 can be w ritten as

- j  0  0 2 ^ 0 5 6  j  nM i  =  v i g w f + P - - , ---------- r ^ g W f - P - U 2 ,
(P2 ~ P m r

M 2,3 =  g w w v  [tpi2 +P5fi)-e+ £ v £ -  +  ( i> 3 4  - p m ) - £ v  £+■£-
-  (Pi2 +  p u ) - £ -  £ v e + ] ,

M+  5 =  ü 4 v  (g y 3 P -  + / / |  :■;/* )  _  p li2)2 - m l 9W ^~ n  ’

M s,7 =  u ? ,g w ( -P -  , (g{A P -  + g[  \ P  )  v3,
№  +  P m Y  v ;

M s ,9 =  ü f k v  ( g i + P -  +  g{ 3 p  )  ^ _  ^ g w t + P - v s ,

& + 0 3 4  ^

( P 5  + F 3 4 ) 2
M w =  u 5g w ( + P -  „ ^ ( z 9 z % P - N m  (11)

where the double subscripts on the left hand side correspond to V  =  7 , Z °  
on the right hand side. In the Wevl representation, the Dirac algebra of 
4 x 4  m atrices in Eqs. (9) and (11) can be easily reduced to  the algebra of 
2 x 2  matrices (14] and then they can be implemented in a FORTRAN program 
and computed numerically for any specific set of the particle m om enta and 
polarizations. The Fortran 90 language standard  which contains intrinsic 
functions for array m anipulations is particularly suitable for this task. Note 
th a t amplitudes of the diagrams which differ only in contributions from 
the photon and Z  propagators can be added, which reduces the number of 
amplitudes to be calculated.

The m atrix  element of the brem sstrahlung reaction (8) is calculated in 
the same way. Three representatives of the 71 Feynman diagrams which 
contribute to  reaction (8) if the Higgs exchange is neglected are depicted in 
Fig. 2. The corresponding amplitudes read

, ,7  - ; 07 -  $1 +  m i  02 -  056 , n
M i  =  v i g ^ i f j - ------------------  ÿ g w f + P - i -----------------^ g w f - P - U 2 - ,

\P7 ^ P i Y  ~ m{ (P 2^ P m r
A /.] ., =  =  g-,  l u  l l '  ( , £ y £ +  £ j - £ — +  £ y £ — £ j - £ a  — 2 £ y £ j  £ _( _• £_ )  ,



Fig. 2. The Feynman diagrams of reaction (7)

where £j = e^(pj ,X j)  is the photon polarization vector and the generalized 
polarization vector e7y  is defined according to  Eq. (5).

In the soft photon limit, iPrl <  w, the m atrix  element of reaction (8 ) 
factorizes

AT| P 7 | < W

Sty

u
P i  _

P i - P 7
u Pl

P4-P7

972

' 9-y5

u
P2 _

P2-P7  
U 

P5
P5-P7

U
P3

P3-P7  

eli(P7, A7)M q, (13)

where g ^ ,  i =  1 , . . . ,  5 are the photon-fermion couplings.
The spin averaged m atrix  element squared is then computed numerically.

The phase space integration is done with the Monte Carlo routine VEGAS
[15]. The number of integrations is reduced from 8  to 7 for reaction (7) 
and from 1 1  to  1 0  for the brem sstrahlung reaction (8 ) by integrating out 
the dependence on the azim uthal angle related to  the rotational sym m etry 
with respect to the beam  axis. In order to  account for a number of peaks in 
the m atrix  element a few different phase space param etrizations of reaction
(8 ) are used which are then combined in a single multichannel Monte Carlo. 
In the soft photon limit, the integrals over the photon phase space can be 
performed analytically due to  the factorization of Eq. (13). The reader is 
referred to  Ref. [14] for the details of the phase space integration.

3. N u m erica l resu lts

In this section, some numerical results for reactions (7) and (8 ) will be 
given. The relevant physical param eters are the gauge boson masses and 
widths m w  =  80.23 GeV, /] , =  2.085 GeV, m z  =  91.1888 GeV, Tz  = 
2.4974 GeV, the fermion masses: m e =  0.51099906 MeV, m ^  =  105.658389 
MeV, m T =  1777.05 MeV, m u =  5 MeV, /»,/ 10 MeV, m s=170 MeV, 
m c= 1.3 GeV. The SM couplings are param etrized by a w  =  1/128.07 and 
by the electroweak mixing param eter sin2 i?q/ =  0.22591. The couplings of



the brem sstrahlung photon are param etrized by a  =  1/137.0359895 which 
means in practice th a t we m ultiply the m atrix  element squared by the ratio 
a /o c w ­

The m atrix  elements of reactions (7) and (8) have been checked against 
MADGRAPH [16] and the electromagnetic gauge invariance of (8) has been 
verified both analytically and numerically. The phase space integrals have 
been checked against their asym ptotic limits obtained analytically. The 
soft photon cut off independence of the splitting of the brem sstrahlung cross 
section into the soft and hard photon part has been verified. Finally, the to tal 
cross section of e+ e“ —> has been compared against Refs. [17] and
[13] and the to ta l cross section of the corresponding brem sstrahlung reaction 
in the presence of the canonical cuts has been compared with Ref. [13].

The energy dependence of the to ta l cross sections of reactions e+ e“ —> 
and e+ e“ —> is shown in Fig. 3. The hard brem sstrahlung

cross section has been calculated with the photon energy cut E 1 =  1 GeV.

(GeV)

Fig. 3. The energy dependence of the total cross sections

In order to  illustrate the dependence on the fermion masses the cross 
sections of different final states of reaction (8 ) for a few centre of mass 
energies are listed in Table I. The cross sections, for the energy cut E 7 > 0.1 
GeV, change by about —9% at 189 GeV and by about —6 % at 2 TeV.



TABLE I
Mass dependence of the total cross sections of (8) in fb for E j  >0.1 GeV

¿cm GeV CT7(«dp vf) CT7(csp vf) CT7(«dr vT)
189.0 573.4(4) 525.2(4) 522.6(4)
360.0 448.5(4) 418.4(4) 414.1(4)
500.0 322.8(4) 302.0(4) 298.1(3)

2000.0 56.48(27) 53.19(25) 52.67(13)

The photon spectra at y f s  =  189 GeV and y f s  =  500 GeV for reaction 
e+ e-  —> u d g ^ i >fl7  are shown in Fig. 4. It is seen th a t the spectra are 
relatively soft, with a substantial fraction of events having photon energies 
of O(Fw)- A bum p of the 189 GeV spectrum  at E7 ~  25 GeV reflects the 
W -pair production threshold.

E-, (GeV)

Fig. 4. The photon spectra at yfs = 189 GeV and f s  = 500 GeV

Finally the invariant mass distributions of the u d  quark pair dcT/dm34 of 
reactions e+ e-  —> udg^i>fl e+ e-  —> udg^i>fl7  at y f s  =  189 GeV are plotted 
as a function of the invariant mass m 34 in Fig. 5.



Fig. 5. The differential cross section d a /d m ^  at sfs = 189 GeV versus the invariant 
mass of the ud  pair m 34.

4. C on clu sion s and o u tlo o k

An efficient m ethod for calculating photon radiation cross sections for 
massive fermions has been discussed. It allows for a correct treatm ent of 
the collinear phase space regions and for a consistent im plem entation of the 
Higgs boson effects. The semi-leptonic channels of reactions (1) and (3) 
and in particular the reactions e+ e“ —> and e+ e“ —>
have been studied. The la tter is well suited for an investigation of ef­
fects of the final sta te  photon emission, e.g. on the W  mass measurement 
since muons appear well separated from photons in detectors. One could 
study the quark mass effects due to the different quark flavor channels in 
e+ e“ —> /* “ ¿ 7 7  +  hadrons at a high luminosity linear collider, like TESLA. 
Of particular interest would be a detailed investigation of the single top pro­
duction channel e+ e“ —> This reaction requires a special treatm ent
because of the pole developed by the i-quark propagator in diagrams (4),
(5) of Fig. 1. The pole could be regularized by introducing a constant width 
of the top which, however, violates the electromagnetic gauge invariance of 
the brem sstrahlung reaction e+ e“ —> tbfi^i>fi7 . Therefore, the reliability of 
results obtained with the constant w idth prescription has to be carefully 
studied, before the actual numbers are presented. Having the final state  
photon resolution in e+ e“ —> U D ^ V f / y  could also make it possible to  in­
vestigate e.g. the quartic f V W W  couplings (V  = j , Z ) ,  which are absent 
on the Born level of 4 /  production.
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