

You have downloaded a document from **RE-BUŚ** repository of the University of Silesia in Katowice

Title: Non-fermi liquid scaling in CeRhSn

Author: Andrzej Ślebarski, T. Zawada, M.B. Maple, P.-C. Ho

Citation style: Ślebarski Andrzej, Zawada T., Maple M.B., Ho P.-C. (2003). Non-fermi liquid scaling in CeRhSn."Acta Physica Polonica B"(Vol. 34, no. 2 (2003), s. 1295-1298).

Uznanie autorstwa - Licencja ta pozwala na kopiowanie, zmienianie, rozprowadzanie, przedstawianie i wykonywanie utworu jedynie pod warunkiem oznaczenia autorstwa.

Biblioteka Uniwersytetu Śląskiego

Ministerstwo Nauki i Szkolnictwa Wyższego

NON-FERMI LIQUID SCALING IN CeRhSn*

A. SLEBARSKI, T. ZAWADA

Institute of Physics, University of Silesia Uniwersytecka 4, 40-007 Katowice, Poland

M.B. MAPLE AND P.-C. HO

Department of Physics and Institute for Pure and Applied Physical Sciences University of California, San Diego, La Jolla, CA 92093-0360, USA

(Received July 10, 2002)

We have recently shown that CeRhSn exhibits non-Fermi liquid temperature dependences in its low-temperature physical properties. Here we suggest that the non-Fermi liquid behavior observed in CeRhSn may be due to the existence of a Griffiths phase in the vicinity of a quantum critical point, based on electrical resistivity, magnetic susceptibility, and specific heat measurements. For CeRhSn, the low-temperature scaling of bulk properties $(C/T \propto \chi \propto T^{-1+\lambda}$, where $\lambda < 1$) is masked by an anomaly at about 6 K, which is of magnetic origin.

PACS numbers: 71.27.+a, 71.30.Mb, 75.20.Hr, 72.15.Qm

Theoretical models of the non-Fermi liquid (NFL) behavior based on single im purity mechanisms include a multichannel Kondo effect of magnetic [1,2] or electric origin [3] and a conventional Kondo effect with a distribution of Kondo temperatures due to chemical disorder $[4,5]$. Theoretical models which incorporate interionic interactions include fluctuations of an order param eter in the vicinity of a second-order phase transition at 0 K (quantum critical point (OCP) [6-12] and an inhomogeneous Griffiths phase [13]. The Griffiths phase [14] consists of magnetic clusters in a paramagnetic phase and forms as a result of the competition between the Kondo effect and the RKKY interaction in the presence of disorder. Castro Neto *et al,* [13] conclude that the specific heat and magnetic susceptibility follow a power law $\gamma \equiv C(T)/T \propto \chi(T) \propto T^{-1+\lambda}$ (where $\lambda < 1$), due to the existence of a Griffiths phase close to a QCP. We recently investigated the compound

^{*} Presented at the International Conference on Strongly Correlated Electron Systems, (SCES02), Cracow, Poland, July 10-13, 2002.

CeRhSn which exhibits NFL behavior [15-17]. The electrical resistivity and magnetic susceptibility have power law temperature dependences at low temperatures with small exponents $\rho(T) \propto T^{0.75}$ and $\chi(T) \propto T^{-0.5}$, and $\gamma \equiv C(T)/T \propto -\ln T$ (the latter over a limited temperature range). Experimental comparisons to the theory of Castro Neto *et al.*, have been m ade and **will** be discussed below.

The specific heat data for non-annealed CeRhSn (sample (a)) and for CeRhSn samples annealed for 4 days (sample (b)) and 8 days (sample (c)) are displayed as C/T versus $\ln T$ in Fig. 1. The high temperature spe- χ cific heat data are very similar for all the samples investigated [16] while, at temperatures lower then about 6.2 K, the magnetic contribution to the specific heat is strongly dependent on the amount of atomic disorder. Assuming that the crystalline electric field ground state is a doublet, the total magnetic entropy per formula unit of CeRhSn is $R \ln 2 = 5.76 \text{ J} \text{mol}^{-1} \text{K}^{-2}$. The small peak in the specific heat of CeRhSn observed at T_N represents an extremally small fraction $\gamma T_N/R \ln 2$ which is respectively $\sim 0.12, 0.06$, and 0.02 of entropy $R \ln 2$ at the phase transition for sample (a) , (b) , and (c) . At present, we do not know whether the observed anomalies reflect long-range order of the small magnetic moments or whether they should be attributed to the other correlation effects, *e.g.,* spin-glass behavior. We have not seen any magnetic order within a limit for an ordered moment of about 0.25 $\mu_{\rm B}$, using a high-resolution neutron spectrometer [16]. Some type of static magnetic order in CeRhSn with tiny ordered moments less than 0.1 μ_B is probably due to subtle structural defects.

Fig. 1 reveals that C/T varies as T^{-n} below 2 K for sample (a) and (b) (see Table I), while it varies as T^{-n} between 1.5 K and 5 K for CeRhSn annealed for 8 days (sample (c)). The best fit of the expression $C(T)/T = cT^{-n}$ to the data yields $n = 0.54$ for sample (a), $n = 0.39$ for sample (b) and

TABLE I

Comparison of electrical resistivity $\Delta \rho$, magnetic susceptibility χ , and specific heat C data for CeRhSn polycrystalline samples: unannealed (a), annealed for 4 days (b) , and for 8 days (c) .

– CeRhSn∣	$\Delta \rho = \Delta \rho(0) [1 + (T/T_0)^n] \quad \quad \chi \propto T^{-1+\lambda} \quad \quad C/T \propto T^{-1+\lambda}$							
	$\Delta \rho(0)$ T ₀			n T-range		λ T-range λ T-range		
	$[\mu \Omega \text{cm}]$ [K] [K]					[K]		K
(a)	47.50			6.8 0.73 1.8-25 \vert 0.60 1.8-6 \vert 0.46 0.6-2				
(b)	32.0			3.6 0.75 1.8-25 $\big $ 0.65 1.8-6			0.61	$0.6 - 2$
(c)	30.38			3.5 0.71 1.8-25 \vert 0.49 0.4-4.2 \vert 0.65 1.5-5				

Fig. 1. Upper part: Specific heat C divided by T , C/T , versus ln T for three CeRhSn samples (sample (a) unannealed; samples (b) and (c) annealed for 4 and 8 days, respectively) [16]. The C/T data were fitted by the formula $C(T)/T = cT^{-n}$ in the range $T < 2$ K for samples (a) and (b), and in the range $1.5 < T < 5$ K for sample (c) . The fits are represented by solid lines. The values of c are, respectively: $246.4 \text{ mJmol}^{-1}\text{K}^{-3}$, $235.9 \text{ mJmol}^{-1}\text{K}^{-3}$, and $195.8 \text{ mJmol}^{-1}\text{K}^{-3}$ for samples (a), (b) , and (c) . The *n* values are listed in Table I. Lower part: Magnetic susceptibility X *versus T* on a double logarithmic plot and the incremental electrical resistivity $\Delta \rho = \rho (CeRhSn) - \rho (LaRhSn)$ *versus T* for a CeRhSn sample annealed for 8 days (sample (c)). The solid line represents the fit of the expression $\Delta \rho(T) = \Delta \rho(0)$ $[1 + a(T/T_{\rm K})^n]$ to the data with $n = 0.74$, $\Delta \rho(0) = 32.2$ $\mu \Omega$ cm, $a = 13.9$ and $T_{\rm K}$ = 145K ($T_{\rm K}$ is the Kondo temperature). The straight line represents the relation $\chi \propto T^{-n}$.

 $n = 0.35$ for sample (c). A noticeable deviation of the C/T data from linearity in $\log T$ at $T < 1.5$ K (sample (c)) is not expected for a NFL. However, a number of systems have been reported $(e.g., Ce(Ru_{0.7}Rh_{0.3})_2Si_2$ [18], $U(Pt_{0.94}Pd_{0.06})_3$ [19], UCu_3Al_2 [20]) which show NFL behavior coexistent with magnetic order. These systems show magnetic behavior in the middle or even above the temperature range where $C/T \propto \ln T$ or T^{-n} , and do not fit the picture of the QCP $[8]$. It is possible that the NFL temperature dependences of $\rho(T)$, $\chi(T)$, and $C(T)$ for disordered CeRhSn in the lowtem perature region are related to the proximity of a magnetically ordered state that depends on the degree of atomic order. The parameters obtained from the best fits (Table I) are consistent with the presence of a Griffiths phase at very low temperatures *i.e.* $C/T \propto \chi \propto T^{-1+\lambda}$, with $\lambda < 1$.

Two of us (AS and TZ) would like to thank the Polish State Committee for Scientific Research (KBN) for financial support from project No. 5 P03B07920. Research at UCSD was supported by the U.S. Department of Energy under Grant No. DE-FG03-86ER-15230.

REFERENCES

- (1] **P.** Nozieres, A. Blandin, *J. Phys.* 41, 193 (1983).
- [2] A.M. Tsvelik, *J. Phys.* **C18**, 159 (1985).
- (3] D.L. Cox, *Phys. Rev. Lett.* **59,** 1240 (1987).
- (4] O.O. Bernal, D.E. **M a cLaug h lin ,** H.G. Lukefahr, B. Andraka, *Phys. Rev. Lett.* 75, 2023 (1995).
- (5] E. Miranda, V. **D obrosavljevic,** G. Kotliar, J. *Phys. Condens. Matter 8,* 9871 (1996).
- (6] T. Moriya, *Spin Fluctuations in Itinerant Magnetism,* Springer, Berlin 1985.
- (7] B. Andraka, A.M. Tsvelik, *Phys. Rev. Lett.* **6 7 ,** 2886 (1991).
- **(8]** A.J. Mills, *Phys. Rev.* **B 4 8 ,** 7183 (1993).
- [9] M.A. Continentino, *Phys. Rev.* **B47**, 11587 (1993).
- **[10]** A.M. Tsvelik, M. Reizer, *Phys. Rev.* **B 4 8 ,** 9887 (1993).
- [11] T. Moriya, T. Takimoto, J. *Phys. Soc. Jpn.* **6 4 ,** 960 (1995).
- **[12]** S. **Sachdev,** N. Read, R. Oppermann, *Phys. Rev.* **B 5 2 ,** 10286 (1995).
- [13] A.H. Castro Neto, G. Castilla, B.A. Jones, *Phys. Rev. Lett.* 81, 3531 (1998).
- **[14]** R.B. Griffiths, *Phys. Rev. Lett.* **2 3,** 17 (1969).
- **[15]** A. Slebarski, A. Jezierski, M.B. Maple, A. **Zygmunt,** *Acta Phys. Pol. B* **32,** 3331 (2001).
- **[16]** A. Slebarski, M.B. Maple, E.J. Freeman, C. **Sirvent, M .** Radlowska, A. Jezierski, E. Granado, Q. Huang, J.W. Lynn, *Phil. Mag.* **B 8 2 ,** 943 (2002).
- **[17]** A. Slebarski, N.A. Frederick, M.B. Maple, *Phil. Mag.* **B ,** to be published.
- [18] T. Taniguchi, Y. Tabata, H. Tanabe, Y. **M iyako,** J. *Magn. Magn. Mater.* **1 7 7 ,** 419 (1998).
- [19] J.S. Kim, B. Andraka, G.R. Stewart, *Phys. Rev.* **B 4 5 ,** 12081 (1992).
- [20] H. Nakotte, K. Prokes, E.B. Brück, K.H.J. Buschow, F.R. de Boer, A.V. Andreev, M.C. Aronson, A. Lacerda, M.S. Torikachvili, R.A. Robinson, M.A.M. Bourke, A.J. Schultz, *Phys. Rev.* **B 5 4 ,** 12176 (1996).