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I discuss the problem to what extent fundamental interactions deter­
mine the structure of spacetime. I show that when we are using only 
topological methods the spacetime should be modelled on an H-compact 
space. Demanding the existence of a differential structure substantially 
narrows the choice of possible models but the differential structure may 
not be unique. I also show by using the noncommutative geometry con­
struction of the standard model that fundamental interactions determine 
the spacetime in the class of H-compact spaces. Fermions are essential for 
the process of determining the spacetime structure.

PACS numbers: 04.20.Gz, 11.15.—q, 11.15.Kc

1. In tro d u ctio n

The outcomes of physical measurements are expressed in rational num­
bers. Nevertheless we believe th a t all possible values of physical variables 
constitute the set of real numbers R.  It is an idealized view since all mea­
surements are performed with certain accuracy and it is even hard to  imagine 
how can they give irrational numbers. Most of physical theories, including 
quantum  gravity, make use of the notion of spacetime, at least approxi­
mately. Therefore physicists spend a lot of tim e on revealing the origin and 
the structure of spacetime. The algebra of real continuous functions C ( M )  
on the spacetime manifold M  seems to be the key to the whole affair of 
determining M .  This algebra play central role in classical and quantum  
physics, although this fact is not always perceived. Here I would like to 
analyse how faithful our theoretical models of the spacetime can be. I will
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try  to  be model independent and avoid unnecessary assumptions. Neverthe­
less, I will suppose th a t it is possible to determ ine the algebra C ( M )  on the 
spacetime (assumed to be a topological space) with sufficient for our aim ac­
curacy. This does not mean th a t we have to  be able to find each element of 
C ( M )  by direct measurement: some, say, inductive construction should be 
sufficient. I will call elements of C ( M )  observables. I will also make use of 
the algebra of continuous E -valued functions C'(M, K ), K  being a topolog­
ical ring. Finally, I will show how C'(M, K )  can be used to construct a field 
theory of fundam ental interactions in the A. Connes’ noncomm utative ge­
om etry formalism and to  what extent the spacetime manifold is determined 
by electroweak interactions.

2 . T h e  t o p o l o g y  o f  s p a c e t im e

A lot of properties of a topological space M  is encoded in the associated 
algebras C'(M, K )  of continuous E -valued functions, K  being a topologi­
cal ring, field, algebra etc. Even differential structures on a manifold M  
can be equivalently defined by appropriate subalgebras C k ( M , K ) of real 
differentiable functions on M .  Suppose th a t our experimental technique 
is powerful enough to  reconstruct C'(M, R )  =  C ( M )  on our model of the 
spacetime M .  W hat sort of information concerning M  can be extracted 
from these data? If M  is a set and C a family of real functions M  —r R. 
then C determines a (minimal) topology tc on M  such th a t all function in C 
are continuous [1,2]. In general, there will be real continuous functions on 
M  th a t do not belong to  C and more families of real functions on M  would 
define the same topology on M .  So, without loss of generality, we can always 
suppose th a t M  is a topological space. To be able to  distinguish x  from y  in 
our model of spacetime we have to  find such an observable /  G C ( M )  th a t 
for x, y  G M  f ( x ) f f ( y ) .  Therefore it seems reasonable to  assume th a t

f ( x ) =  f ( y )  V f € C ( M )  =7 x  =  y .  (1)

From the m athem atical point of view, we have to  identify all points th a t 
are not distinguished by C ( M ) ,  th a t is to demand (1). It is then easy to 
show th a t such spaces are Hausdorff spaces. This means th a t we can look 
for the topological representation of the spacetime in the class of Hausdorff 
spaces. To proceed let me define [2,4]:

D e f i n i t i o n  1 . Let E  be a topological space. A topological Hausdorff 
space X  is called E-com pact (E-regular) if it is homeomorphic to  a closed 
(arbitrary) subspace of some Tvchonoff power of E , E Y .

The following facts justify our assum ption (1). For a topological space 
X ,  not necessarily a Hausdorff one, we can construct an E-regular space



t e X  and its D-compact extension v E X  so th a t we have [3,4]

C  ( X ,  E) = C  ( t e X ,  E ) ^ C  ( v e X ,  E ) ^ C  ( v e t e X ,  E)  , (2)

where =  denotes isomorphism. The spaces te X  and v e te X  have the nice 
property (1). Now, it is obvious tha t, in general, our theoretical model of 
the spacetime may not be unique. This im portant result also says th a t we 
can always model our spacetime as a subset of some Tvchonoff power of R  
provided C ( M )  is known! But it also says th a t we can model it on a subset of 
a Tvchonoff power of a different topological space e.g. the rational numbers 
Q (cf. the discussion at the beginning). So its our choice! The topological 
number fields R  and Q have the additional nice property of determining 
uniquely (up to a homeomorphism) R- and Q-com pact sets provided the 
appropriate algebras of continuous functions are known:

C  (X,  E)  = C  (Y, E)  <++> V  is homeomorphic to Y, E  = R  or Q . (3)

O ther topological rings can also have this property. But this does not mean 
th a t the spacetime modelled on C'(M, E)  is homeomorphic to the one mod­
elled on C ( M , E ' ) .  Hewitt have shown th a t 12-compact spaces are deter­
mined up to  a homeomorphism by C ( X , E ) ,  where E  = R, C  or H  (the 
topological fields of complex numbers and quaternions, respectively) [5]. 
This means th a t if we are interested in modelling spacetime on an 12-compact 
space then we can use C'(M, 12), C'(M, C) or C'(M, H ) to  determine it. Such 
conclusion is false for rational numbers.

Another problem we have to  face is to decide if we are dealing with the 
algebra C ( X ,  E)  or only with the algebra of all continuous bounded E - valued 
functions on X ,  C * ( X , E )  [2,4] if this concept make sense. For a compact 
space X  we have C ( X , E )  = C * ( X ,E ) ,  bu t in general, they are distinct. 
Spaces on which all continuous real functions are bounded are called pseu­
docompact. An 12-compact pseudocompact space is compact. We might get 
hints th a t some observables may in fact be unbounded but we are unlikely 
to  be able to “measure infinities”. An unbounded observable is necessary to 
show th a t the spacetime is a noncompact topological space. If we suppose 
th a t we can only recover C * ( M , R ) =  C * ( M ) ,  then we can as well sup­
pose th a t M  is compact (for an 12-compact M ) .  In general, there w ill be 
more spaces with C*(M)  as the algebra of real bounded continuous functions 
on them  (they may not be compact or even 12-compact). Compactness (or 
paracompactness) of the space is a welcome property. For example pseudod­
ifferential operators have discrete spectrum  on compact spaces. Physicists 
often compactifv configuration spaces by adding extra points or imposing 
appropriate boundary conditions. Demanding th a t all physical fields van­
ish a t infinity is usually equivalent to  the one point compactification of the



spacetime and requiring th a t all fields vanish at the added “infinity point”. In 
general, a topological space X  has more then one compactification. In some 
sense the one point compactification is minimal and the Stone-Cech com­
pactification is maximal [2]. We will probably have to make nontopological 
assum ptions to choose one among the possible compactifications although 
they can be distinguished by regular subrings of C ( M )  if they contain con­
stan t functions [3,4].

It may be too optim istic to assume th a t we are able to  determine C ( M , R ) 
w ith the required precision. Suppose th a t our experimental technique allows 
only for sort of yes or no  answer to questions concerning spacetime struc­
ture [6]. In this case we have to  consider determ ination of a topological 
space X  by the ring C ( X , D )  of continuous functions into D  =  {0,1} with 
various topological and /o r algebraic structures. In general, C ( X , D )  does 
not determine the space X  although C ( X , Z 2) fulfils (3) with E  =  Z 2. One 
can also consider other discrete fields e.g. Z 3 [3,4]. In such case we can 
only try  to  determine the space in the class of ¿-com pact spaces for some 
discrete E .  Topological subfields of R  can also be used for th a t purpose 
because they fulfil (3) [2-4].

One may also wonder if the knowledge of some symmetries might be 
of any help. In general, a topological space X  is not determined by its 
symmetries (homeomorphisms X  —» X )  [7,8] bu t sometimes can provide us 
with useful information, e.g. if we know th a t some group G  acts transitively 
on X  then the cardinality of X  is not greater than  the cardinality of G  [9]. 
For example, if we are pretty  sure th a t the Lorentz group acts transitively 
on the spacetime we have got an upper bound on the cardinality of the 
spacetime.

Of course, spacetime “points” may have structure th a t is beyond our 
experimental scope. This corresponds to determining only some subalgebra 
of C ( M ) .  We have to find a phenomenon th a t is indescribable in term s of 
C ( M ) to reject the assumptions of f2-compactness of the spacetime.

We do not know if the physical world can be described by using only 
topological m ethods. The most spectacular example is the existence of the 
W hitehead spaces. These are three-dimensional topological manifolds th a t 
are not homeomorphic to  R 3 but their products with R  are homeomorphic 
to  R 4. In other words when an R l is factored out in R 4 the result will not 
necessary be R 3. One have to  demand differentiability for this to be the case. 
More sophisticated formalism would involve further assum ptions about the 
spacetime structure but it may not be easy to find out if these assumptions 
are necessary or ju st convenient tools. I will discuss some aspects of this 
issue in the following sections.



3 .  D i f f e r e n t i a l  s t r u c t u r e ?

Differential calculus have proven to  be a powerful tool in the hands of 
physicists. But is it indispensable? Not every topological space or even 
topological manifold can support differential structures and demanding the 
existence of a differential structure on the spacetime can severely restrict 
our choice of spaces for modelling the spacetime. A differential structure on 
a topological manifold M , if it exists, can be defined by specifying a sub­
algebra of k-times differentiable functions C k( M , R ) of the algebra C (M ) .  
The algebra C°°(M)  of smooth real functions on M  determines M  up to  a 
diffeomophism [10] (the points of M  are in one-to-one correspondence with 
m aximal ideals in C°°(M)) .  The algebra of continuous functions on M  is 
larger than  C k ( M , R )  and may correspond to  more topological spaces than  
M  bu t if two manifolds have at some points p  and q isomorphic rings of 
germs of continuous functions then the points p  and q have homeomorphic 
neighbourhoods (local dimensions are the same) [11]. If the laws of physics 
are “sm ooth” then the spacetime should be modelled on a sm ooth manifold. 
If this is the case then R )  is sufficient to determine M  and describe
all physical phenomena. Geometrical quantization is one of the most popular 
efforts in this direction. But in the smooth case we face a new nonuniqueness 
problem because some manifolds can support many nonequivalent differen­
tial structures [12,19]. Such “additional” differential structures are usually 
referred to as fake  or exotic ones. They are specially abundant in the four­
dimensional case (it is sufficient to  remove one point from a given manifold 
to  get a manifold with exotic structures [16]). More astonishing is the fact 
th a t the topologically trivial fourdimensional Euclidean space R 4 can be 
given uncountablv many exotic structures (in fact a two-param eter family 
of them ) [16]. We have to interpret these m athem atical results in physical 
language [17,19]. This is not an easy task. Although one can put forward 
many argum ents th a t exotic smoothness might have physical sense [18], the 
lack of any tractable (pseudo-) Riemannian structure hinders physical pre­
dictions. Nevertheless some problems can be discussed.

4 . N o n c o m m u t a t i v e  d i f f e r e n t i a l  g e o m e t r y  a n d  p h y s i c a l  m o d e ls

As I have noted in the previous section, differential geometry can be 
form ulated in term s of the comm utative algebra of real smooth functions on 
the manifold in question. Connes m anaged to  generalize this result for much 
larger class of algebras, not necessarily comm utative [20,21]. One should 
not be surprised th a t his noncomm utative geometry have found profound 
physical applications. The basic ingredients are a 6 *-algebra A  represented 
in some Hilbert space H  and a distinguished operator V  (“Dirac operator”) 
acting in H .  The differential da of an a € A  is defined by [D, a] and the



integral is replaced by the Diximier trace, Trw, with an appropriate inverse 
n-th  power of \V\ instead of the volume element dnx.  The Diximier trace of 
an operator O is roughly speaking the logarithmic divergence of the ordinary 
trace:

Trw O  =  lim Xl +  • • • +   ̂ ^
ra -lo o  log n

where A; is the ¿-th proper value of O. See [20, 24, 25] for details. One 
can generalize the notions of covariant derivative (V), connection (A)  and 
curvature (F)  forms so th a t “standard” properties are conserved:

V d +  ,1. F  =  V2 =  d A  + A 2 , (5)

where A  e  L?§) is the algebra of one forms defined with respect to  d [20,21]. 
Fiber bundles became projective modules on A  in this language. The n-  
dimensional Yang-Mills fermionie action is given by the formula

£  (A, y , V )  =  Trw ( F 2 I V  T " )  +  {fi I V  +  A  I y ) , (6)

where (|) denotes the scalar product in the Hilbert space. For A  = C°°(M)  
and V  being the classical Dirac operator we recover the ordinary Rieman­
nian geometry of the spin manifold M .  Physicists have learned from the 
noncomm utative geometry th a t one can describe fundam ental interactions 
by specifying the Hilbert space of fermionie states and a representation of 
an C* algebra in this Hilbert space. If one takes

A  =  C ° ° ( M , C )  © H )  © M 3x3(C°°(M, O ) , (7)

the known fermionie states to  span the Hilbert space and the generalized 
Dirac operator including the Kobayashi-Maskawa mass m atrix  as V  one 
gets the standard  model Lagrangian [20,23] (I have neglected some impor­
tan t technical details th a t are not necessary for the present discussion). The 
structure of the “spacetime algebra” (7) and the analysis given in the pre­
vious sections allow us to  conclude th a t the spacetime structure is uniquely 
determined in the class of fř-com pact spaces by fundam ental interactions of 
fermions (gravitation is hidden in the m etric tensor th a t “enters” the Dirac 
operator). The knowledge of C°°(M)  is sufficient for the construction of 
the manifold M  bu t the Higgs mechanism to be a t work requires th a t M  
is multiplied by some discrete space [20,24,25]. All this means th a t we 
may not know the structure of the spacetime with satisfactory precision but 
nevertheless fundam ental interactions determine it in a quite unique way: 
there is only one spacetime in the class of fř-com pact spaces. It should be 
noted here th a t if others rings would appear in (7) then this conclusion may 
not be true (for example, grand unified models can be less determ inative



than  the “low energy approxim ation” [23]). Of course, it is still possible 
th a t the C* algebra A  th a t describes correctly fundam ental interactions do 
not correspond to  any topological space. This would mean th a t spacetime 
can only approxim ately be described as a topological space, say, defined by 
some subalgebra of A  or th a t fundam ental interactions does not determine it 
uniquely. It should be stressed here th a t m atter fields (fermions) and their 
interactions are essential in the process determining the spacetime struc­
ture (the Dirac operator and the Hilbert space in question). The pure gauge 
sector is insufficient because two E-com pact spaces X  and Y  are homeomor- 
phic if and only if the categories of all modules over C ( X , E )  and C ( Y ,E )  
are equivalent. The noncomm utative geometry formalism even suggest th a t 
fermions and their interactions “define” the spacetime via the Dirac operator 
a t least on the theoretical level.

5 .  C o n c l u s i o n s

I have analysed the problem of determining the spacetime structure. We 
should be able to determ ine the spacetime in the class of Jř-com pact spaces 
a t least in the abstract sense. We have to find a phenomenon th a t cannot 
be described in term s of the algebra C ( M )  to reject the assum ption of R -  
compactness. If we are using only topological m ethods we will not be able 
to  construct the topological model M  of the spacetime uniquely. An un­
bounded observable is necessary to  prove noncompactness of spacetime. In 
the general case, we will be able to  construct only the Stone-Cech compact­
ification of the space in question. The existence of a differential structure 
on M  allows for the identification of M  with the set of maximal ideals of 

although we anticipate th a t the determ ination of the differential 
structure may be problematic. Connes’ construction of the standard  model 
Lagrangian imply th a t fundam ental interactions of m atter fields determine 
the model of spacetime in the class Jř-com pact space in a unique way. More 
general models of fundam ental interactions, for example GUTs, are lack­
ing in such a determ inative power. M atter fields are essential for defining 
and determining the spacetime properties. If we are not able to determine 
C'(M, R ) or C'(M, Q ) then our knowledge of the spacetime structure is sub­
stantially limited. If this is the case we have a bigger class of spaces “at 
our disposal” and we have more freedom in making assum ptions about the 
topology of the spacetime.
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