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Decision support systems founded on rule-based knowledge representation should be equipped with rule management
mechanisms. Effective exploration of new knowledge in every domain of human life requires new algorithms of knowledge
organization and a thorough search of the created data structures. In this work, the author introduces an optimization of both
the knowledge base structure and the inference algorithm. Hence, a new, hierarchically organized knowledge base structure is
proposed as it draws on the cluster analysis method and a new forward-chaining inference algorithm which searches only the
so-called representatives of rule clusters. Making use of the similarity approach, the algorithm tries to discover new facts (new
knowledge) from rules and facts already known. The author defines and analyses four various representative generation
methods for rule clusters. Experimental results contain the analysis of the impact of the proposed methods on the efficiency of a
decision support system with such knowledge representation. In order to do this, four representative generation methods and
various types of clustering parameters (similarity measure, clustering methods, etc.) were examined. As can be seen, the
proposed modification of both the structure of knowledge base and the inference algorithm has yielded satisfactory results.

1. Introduction

Big Data is no longer just about processing a huge number of
bytes, but doing things with data that you could not do previ-
ously. It is not just tabular data you can easily stick into a
spreadsheet or a database [1].Where computer scientists were
once limited to mere gigabytes or terabytes of information,
they are now studying petabytes and even exabytes of infor-
mation. At the same time, the tools to sift all that data are get-
ting better as computer scientists refine and improve the
algorithms they use to extract meaning from the deluge of
data [2]. There is no doubt that big data are now rapidly
expanding in all science and engineering domains. While
the potential of these massive data is undoubtedly significant,
fully making sense of them requires new ways of thinking and
novel learning techniques to address the various challenges.

Most traditional machine learning techniques are not inher-
ently efficient or scalable enough to handle the data with the
characteristics of large volume, different types, high speed,
uncertainty and incompleteness, and low value density. In
response, machine learning needs to reinvent itself for big
data processing [3]. Current hot topics in the quest to improve
effectiveness of the machine learning techniques include
search for compact knowledge representation methods and
better tools for knowledge discovery and integration.

The main subject of the author’s scientific work lies at the
boundary of artificial intelligence, methods of representation
and exploration of domain knowledge, statistical methods of
data analysis, and machine learning methods. Recent work
focuses on managing complex knowledge bases with rule
representation and the development of new inference algo-
rithms in such data sets.
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In order to extract useful domain knowledge from the
studied area, a lot of data should be collected beforehand.
Much also depends on how the rules are induced. For exam-
ple, effective rule induction algorithms can generate a com-
pressed set of several dozen or several hundred rules for a
data set consisting of several thousand objects. That is why
when talking about domain knowledge bases, files with sev-
eral thousand rules are often considered to be too large [4].
The author’s experience of working on such amount of data
is presented in [5]. In this research, the author has focused
on discovering the optimal methods for big data storage,
managing management, and exploration. In order to do this,
the preliminary experiments, using medium-sized knowl-
edge bases with various types and sizes of data, were carried
out. The goal is to specify the most important parameters
that facilitate a quick and effective discovery of new knowl-
edge in knowledge bases.

In inference processes based on the rule-based knowledge
bases, we explore new domain knowledge by activating the
rules (components of a rule-based system with form: IF pre-
mises THEN conclusion) with true premises—the ones
which may have been covered by the facts given a priori.
The process of activating a given rule results in dealing with
its conclusion as a new fact. The more rules and initial facts
in a given knowledge base, the more rules that can be acti-
vated. Of course, the recent solutions in the area of decision
support systems require that they additionally perform the
task in the shortest time and with the least human involve-
ment. Let us take an example of the medical system, in which
we aim to make a decision as fast as possible, based on the
knowledge (facts) about a particular patient. The system
searches a knowledge base with rules in order to find all the
rules relevant to the given set of facts. In case of a big data
set, with many rules, such a process can be too time-
consuming. The classic approach is then inefficient, as it
has to search every rule in a given knowledge base, which
in case of big dataset takes too much time. Thus, new solu-
tions need to be discovered and developed. Such solutions
should result in the effectiveness not worse than it is in the
case of the classic approach, doing it as quickly and as effi-
ciently as possible. It requires a deep analysis of the knowl-
edge stored in the knowledge bases and exploration of the
information about a given domain, for example, in the form
of so-called meta-knowledge (knowledge about knowledge).
In the literature, there is a lot of research devoted to the sub-
ject of meta-knowledge and meta-rules [6–8].

It is widely known that the best way to learn a new field is
to use generalization skills. Generalization is the process of
discovering general features, important features, and the fea-
tures common for a given class of objects. Following this
path, the generalization of the information saved in the rules
allows us to gain knowledge about those rules. By attributing
similar rules to one group and through the generalization of
such groups, we obtain knowledge about many rules without
having to review each rule separately.

The notion proposed in this paper is built around the idea
of the similarity analysis between the rules and then their
subsequent clustering. Among numerous clustering algo-
rithms, the agglomerative hierarchical clustering (AHC)

algorithm was chosen (the author previously analysed many
other algorithms as well [9, 10]). Its most important feature
(and advantage) is the fact that it clusters (agglomerates)
the most similar rules and forms a group from them. Regard-
ing the rules in the knowledge base, we must take into
account that from a certain moment of clustering, the rules
cease to be similar in any respect and there is no reason to
cluster them any longer. Thus, the classic clustering AHC
algorithm requires a modification. Furthermore, to effec-
tively (efficiently and quickly) find the right group of rules
to activate, it is necessary to describe them optimally. The
author has recently devoted much attention to the proposal
and analysis of methods for representing groups of rules,
using the generalization approach [11]. This paper is aimed
at verifying the effectiveness of inference, i.e., the ability to
activate rules by reviewing only a selected part of the entire
knowledge base, most relevant to the given facts. An infer-
ence process can be considered successfully finished where
only a small part of the entire knowledge base is searched
and we are able to successfully find and activate a given rule
(or rules).

It turns out that some clustering parameters have a signif-
icant impact on the structure of groups of rules (a tendency to
create small or large clusters, to identify atypical rules and sep-
arate them fromgroups).Moreover, certainmethods of repre-
sentation of rule clusters (representative generation methods)
are characterized by a tendency to create overly general repre-
sentatives (or sometimes empty) or overly detailed represen-
tatives that have ceased to reflect the content of the whole
group. Having knowledge about which clustering parameters
and which representative generation methods ensure the best
efficiency, we will be able to strive to achieve optimal results.

The structure of the paper is as follows. Section 2 intro-
duces the rule-based knowledge bases and inference pro-
cesses in decision support systems. Managing of rules in
knowledge bases is the main subject of Section 3. The pro-
posed approach with a description of the clustering algo-
rithm and inference algorithm for a hierarchical structure
of a knowledge base with rule clusters is presented in Section
4. The results of experiments with their interpretation are
included in Section 5. The summary is presented in Section 6.

2. Knowledge-Based Systems

The knowledge-based system (KBS) is a system that uses arti-
ficial intelligence to solve problems. It focuses on using
knowledge-based techniques to support human decision
making, learning, and action. Such systems are capable of
cooperating with human users and are fit for purpose. We
may even say that they are better than humans are, as they
are enriched with the virtues of efficiency and effectiveness.
They are able to diagnose diseases, repair electrical networks,
control industrial workplaces, create geological maps, etc.
Representation of knowledge is difficult because an expert
knowledge can be imprecise and/or uncertain. In general,
the knowledge is represented as a large set of simple rules.
Conclusions are generally obtained through the inference
process. The expert systems have been pioneers in the field
of knowledge-based systems. They replace one or more
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experts for problem solving. In many situations, they may be
more useful than traditional computer-based information
systems. There are many circumstances when they become
particularly useful: when an expert is not available, when
expertise is to be stored for future use or when expertise is
to be cloned or multiplied, when intelligent assistance and/
or training are required for decision-making or problem-
solving, or when more than one expert’s knowledge has to
be stored on one platform. All these situations make them
very useful nowadays, and thus, it is very important to
improve their performance and usability. The improvement
may concern both the structure of the knowledge base and
the inference algorithms.

2.1. Rule-Based Knowledge Bases. Among various methods of
knowledge representation, rules are the most popular form.

Rule-based knowledge representation uses the Horn
clause form: “if premise then conclusion.” This is one of the
most natural ways for domain experts to explain and present
their knowledge. Activation of the rules during the inference
process results in adding their conclusions as new facts (new
knowledge). Let us assume that the knowledge base KB is a
set of N rules: KB = r1, r2,… , rN . Every rule r ∈ KB has a
form r = cond1 r ∧ cond2 r ∧⋯∧ condm r ⟶ concl r ,
where cond1 r ∧⋯∧ condm r is the conjunction of the
rule’s conditions (premises) and concl r is the conclusion
of the rule r.

Rules may be generated automatically using one of
many possible algorithms based on the machine learning
techniques. The knowledge base can be composed of differ-
ent types of rules: classification rules, association rules,
regression rules, or the so-called survival ones [12]. In addi-
tion, the rule set can be obtained by transforming the deci-
sion tree [13]. They also can be given by experts, but such
process is a very difficult task. Usually, the value of experts’
knowledge is rated so highly that experts are reluctant to
share it. Therefore, to carry out the right number of exper-
iments, it was decided to use the knowledge base with rules
generated automatically from data shared within the UCI
machine learning repository [14]. An efficient algorithm
for generating rules automatically from data is the LEM
algorithm [15]. It is based on the rough set theory [16–18]
and induces a set of certain rules from the lower approxima-
tion (lower approximation is a description of the domain
objects that are known with certainty to belong to the subset
of interest), and, respectively, a set of possible rules from the
upper approximation (upper approximation is a description
of the objects that possibly belong to the subset of interest).
This algorithm follows a classical greedy scheme which pro-
duces a local covering of each decision concept. It covers all
examples from the given approximation using a minimal set
of rules.

The procedure for preparing knowledge bases for this
work was as follows. Each selected set of data from the repos-
itory was rewritten as a decision table, which was then subject
to the process of rule induction (LEM2 algorithm) using the
RSES tool [19].

As an example, let us take a heart disease dataset [20],
which originally contains 303 instances, described by 14

nominal and numerical attributes (age: in years, sex:
(1 =male; 0 = female), cp: chest pain type with values (1): typ-
ical angina, (2): atypical angina, (3): nonanginal pain, and
(4): asymptomatic and others). The “goal” field refers to the
presence of heart disease in the patient. It is integer valued
from 0 (no presence) to 4.

The piece of the original dataset is as follows:
63.0,1.0,1.0,145.0,233.0,1.0,2.0,150.0,0.0,

2.3,3.0,0.0,6.0,0

67.0,1.0,4.0,160.0,286.0,0.0,2.0,108.0,1.0,

1.5,2.0,3.0,3.0,2

67.0,1.0,4.0,120.0,229.0,0.0,2.0,129.0,1.0,

2.6,2.0,2.0,7.0,1

37.0,1.0,3.0,130.0,250.0,0.0,0.0,187.0,0.0,

3.5,3.0,0.0,3.0,0

41.0,0.0,2.0,130.0,204.0,0.0,2.0,172.0,0.0,

1.4,1.0,0.0,3.0,0

56.0,1.0,2.0,120.0,236.0,0.0,0.0,178.0,0.0,

0.8,1.0,0.0,3.0,0

A knowledge base with 99 rules has been achieved. The
source file is as shown in Sourcecode 1.

The rule (blood_sugar=0)&(angina=0.0)&(thal=

3.0)&(sex=0)&(pain_type=3.0)=>(disease=1[23]) 23

should be read as: if (blood sugar = 0) and (thal = 3.0) and
(sex = 0) and (pain_type =3.0) then (disease = 1) which is
covered by 23 of the 303 instances in the original dataset
(8% of 303 instances cover this rule).

When the size of the input data (which rules are to be
generated from) increases, the number of generated rules
does too. Let us look at the diabetes data set [14]. It contains
the data for 768 objects described with 8 continuous attri-
butes. Processing the data with LEM2 and RSES with an
implementation of the LEM2 algorithm, 490 rules have been
created. For the nursery dataset, which originally contains
12,960 instances described with 9 conditional attributes,
867 rules have been generated. Such numbers make it diffi-
cult or even impossible to be analysed by a person. It is also
important to note that the generated rules might have a vary-
ing number of premises. It can be said that the fewer pre-
mises a rule has, the easier it is to determine if it is true (it
requires less number of conditions to cover). On the other
hand, making a decision dependent on the highest possible
number of conditions may suggest that if all the conditions
have been met, the decision must be correct.

When looking globally at a knowledge base with rules, it
turns out that it may contain a large number of short rules
(with one premise or a few) but also some rules described
with a large number of premises with only a few premises
that differentiate them. This, in turn, brings about various
problems at the rule analysis stage in the inference process.
When there is a set of many long rules (described with several
premises) which differ from one another by a single premise,
it can extend the inference process which then attempts to
check all the rules which are deemed fit to be activated.
Another possible outcome might be that in a given knowl-
edge base there is an uneven distribution of rules connected
with given premises. This may result in a large group of rules
dedicated to one area only and one or very few rules describ-
ing other areas of the domain (the particular part of the
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domain has not been sufficiently explored). Finding rare
rules might become a nontrivial task. When taking into con-
sideration the matter of big sets of often dispersed rules, it
turns out that for the effectiveness of the inference processes,
decision support systems founded on rule-based knowledge
representation should be equipped with rule management
mechanisms. In other words, they are methods and tools
which help to review the rules effectively and quickly find
those to be activated. One of the available solutions is rule
clustering. In the subject literature, this issue has been exten-
sively described and most of the time it focuses on cluster
analysis [21]. Assuming every rule cluster as a group of sim-
ilar rules, it is possible to create its representative as a set of all
the features that describe the group in the best possible way.
Let us imagine there is a knowledge base with a large number
of rules which are subject to clustering. As a result, there will
be a structure of groups of rules which are similar to one
another. The extent of cohesiveness of a knowledge base will
translate into the number and size of the resulting clusters of
rules. There are several possible scenarios: a small number of
clusters which contain a large number of rules in each of
them or a large number of clusters which contain a few rules
in each of the clusters. Of course, the scenarios described
above are at the extreme ends of the scale. However, the gen-
erated structure of clusters may be well-balanced where each
cluster contains a comparable number of rules and the
number of rules is close to the size of each cluster (e.g., if
there are 100 rules which are divided into 10 clusters with
10 rules in each).

Subsequently, the effectiveness of the knowledge
extraction from rule clusters depends on the rule cluster
quality and the efficiency of inference algorithms. For rule
clusters, we create representatives and they are then
searched in the process of inference. Due to the fact that
the quality of representatives and the optimization of
inference processes are so important, better solutions are
still being sought.

To make the rule activation process possible, apart from
the gathered knowledge, an inference mechanism is neces-
sary. The following subsection presents the definition of
inference and a short description of the existing inference
algorithms and discusses the parameters and the inference
control strategies.

2.2. Inference Algorithm. An inference engine is a software
program that refers to the existing knowledge, manipulates
the knowledge in line with needs, and makes decisions
about actions to be taken. It generally utilizes pattern
matching and search techniques for conclusions. Through
these procedures, the inference engine examines existing
facts and rules and adds new facts when possible. There
are two common methods of deriving new facts from rules
and known facts. These are data-driven (forward chaining)
and goal-driven (backward chaining) inference algorithms.
The most popular one, with respect to the usability in
real-life applications, is the data-driven algorithm based
on the modus ponens rule—a common inference strategy.
It is simple and easy to understand [22]. The framework
can be given as follows: the rule states that when A is
known to be true and a rule states “if A, then B,” it is
valid to conclude that B is true.

The data-driven algorithm starts with some facts and
applies rules to find all possible conclusions. It is applica-
ble when the goal of inference is undefined. The inference
with a given goal is provided until this goal is considered
as a new fact. The case in which there are more than one
possible rule to activate, in a given iteration of the infer-
ence algorithm, is called in the literature a conflict set,
and the method which deals with the issue is called the
conflict set resolution strategy [23]. It should be empha-
sized, especially in case of a big dataset, that such situation
occurs very often. There are many possible strategies
proposed in the literature, but the most popular ones are
to use the FIFO (First In First Out) or LIFO (Last In First

RULE_SET heart_disease

ATTRIBUTES 14

agenumeric 1

sex numeric 1

.....

diseasesymbolic

DECISION_VALUES 2

2

1

RULES 99

(blood_sugar=0)&(angina=0.0)&(thal=3.0)&(sex=0)&(pain_type=3.0)=>(disease=1[23]) 23

(blood_sugar=0)&(angina=0.0)&(thal=3.0)&(no._of_vessels=0)&(sex=0)&(electrocardiograph=0.0)

=>(disease=1[22]) 22

....

...

(blood_sugar=0)&(sex=1)&(electrocardiograph=2.0)&(angina=0.0)&(pain_type=1.0)&(age=42)

=>(disease=1[1]) 1

(blood_sugar=0)&(sex=1)&(electrocardiograph=2.0)&(no._of_vessels=0)&(thal=7.0)&(angina=1.0)&(age=53)

=>(disease=1[1]) 1

Sourcecode 1
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Out) techniques familiar in programming languages.
When there are many rules and facts involved in an expert
system, classic inference algorithms become ineffective.
Inference times become unacceptable, and the number of
newly generated facts exceeds the limit of the new knowl-
edge that can be properly absorbed.

In such cases, it is necessary to find new inference algo-
rithms which ensure effective management of the analysis
process for rules to be activated. One may also consider
changing the structure of the knowledge base with the rules
to organize them in a specific and well-described structure
so that later its search would be effective.

In this paper, the author continues her research on
modification of a knowledge base structure with rules into a
hierarchical one where the quality of representatives of
the created rule clusters is as important as the quality of
these clusters.

Therefore, the author proposes the following method of
optimization. At the first stage, the knowledge base structure
is modified. In the classic approach where the knowledge
base is a set of rules written without any specific order, it is
necessary to search the entire set of rules. The author pro-
poses to cluster the rules with similar premises into the rule
clusters. Among various methods, the agglomerative hierar-
chical clustering algorithm is used in this research (the
author has also studied the use of other algorithms [10]).
Its classic approach assumes merging, in every iteration, the
two most similar rules or groups of rules into one group.
The proposed modification of this approach is based on find-
ing the optimal moment to cut the created hierarchical struc-
ture of rules. It should be finished when there is not enough
similarity between the rules or groups of rules which
remained to be clustered. Details of the proposed approach
are presented in the following section.

3. Rule Clustering

Too many rules in the knowledge base can negatively affect
the effectiveness of management of rules. One of the ways
of managing the rules is to cluster them into groups and to
describe the groups by their representatives. Each cluster is
described using a so-called group representative (Profile).
The notion of cluster analysis indicates that objects in the
analysed dimension are split into clusters which collect the
objects most similar to one another and the resulting clusters
are as different as possible [21]. The optimal structure of rule
clusters assumes a maximum internal similarity and a mini-
mal external similarity between groups of rules. It guarantees
an optimum internal cohesion and external separateness of
clusters. In the next subsection, the author briefly introduces
other clustering methods.

3.1. A Short Characteristic of Clustering Algorithms. Within
the scope of cluster analysis algorithms, it is possible to
select either partitional (sometimes called k-optimizing
algorithms, as exemplified by k-means) or hierarchical
algorithms (which provide additional knowledge about
the order of clustering the most similar objects together,
e.g., the agglomerative hierarchical clustering algorithm

(AHC)). Both partitional and hierarchical algorithms
utilize the distance or similarity measurement in the
process of finding similar objects. Moreover, there are
algorithms based on the intracluster density (DBSCAN
[24] and OPTICS [25]) and, most recently, spectral analy-
sis algorithms (SMS (spectral mean shift) [26]).

Assuming that clustering is an automated process
performed on a random set of rules with an unknown
structure, the best solution which helps to avoid other
possible problems is to use a hierarchical algorithm. The
above-mentioned problems are, among others, an inability
to determine an optimum number of clusters (necessary
for partitional algorithms), the need to separate rare
objects (rules) from the created clusters, and a motivation
to gain additional knowledge on the sequence of rule
clustering so that for each rule, another most similar rule
or cluster can be found. In the density-based algorithms,
similarly to partitional algorithms, additional clustering
parameters like a minimum proximity threshold or the
number of objects in a cluster need to be defined. The
agglomerative hierarchical clustering algorithm (AHC) is
free of such limitations [9, 10]. This algorithm has many
modifications which vary from the original with respect
to a changing stop condition of the clustering process.

3.2. Agglomerative Hierarchical Clustering Algorithm. The
author proposes the clustering of rules with similar
premises which produces a hierarchical structure (dendro-
gram). In the classic form of the agglomerative hierarchi-
cal clustering algorithm (AHC), the clustering process of
individual rules should be continued until a single cluster
of rules is obtained with a reservation that at each step a
cluster is created by joining pairs of the most similar rules
or clusters of rules. Accordingly, for the N number of
rules in a knowledge base, the number of the algorithm’s
iterations is equal to N − 1. It is easy to notice that for
numerous knowledge bases the inference’s duration time
might be a problem. This is an unacceptable feature for
big knowledge bases, and modifications which reduce the
number of iterations are welcome.

3.3. Clustering Parameters. There are various clustering
parameters that help to achieve optimal clustering results.
In this research, the author has analysed such parameters as
similarity measures, the number of clusters to create, and
clustering methods.

3.3.1. Similarity Measures. Clustering of similar objects
requires that similarities (or distances) between the object
be defined. In the literature, there is a lot of research
devoted to the analysis of available measures of similarity
and dissimilarity of objects [27, 28]. These measures (in
this paper) have been used to determine the similarities
of rules between one another as well as the similarities
of rules and clusters of rules in relation to the cluster
representatives. The same measures can be subsequently
used to measure the similarity of representatives for clus-
ters of rules and facts in the inference process. To provide
the universality of the solution, both the single rules and
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clusters use the conjunction of pairs which consist of an
attribute and its value. The values of attributes may be
symbolic and continuous.

Generally, a similarity value for a pair of rules ri and r j
which belong to a set of rules R is calculated in the following
way:

sim ri, rj = 〠
m

f=1
wf ∗ simf rif , rjf , 1

where simf is a similarity value between two rules ri and r j in
relation to the f − th attribute and the value wf is the weight
of the attribute af (usually determined as wf = 1/d for
f = 1,… , d, where d is the number of attributes). Alterna-
tively, weights 0 and 1 can be used for attributes (where 0
for the f − th attribute’s weight means that the attribute does
not appear in the rule while 1 means that a given attribute
constitutes the rule’s premise part). The similarity value can
be obtained by using one of a various possible similarity
measures. The author dealt with the influence of measures
of similarity on the clustering quality in [29, 30]. In [29], nine
various measures were described and analysed: SMC (simple
matching coefficient) and its modification wSMC (weighted
simple matching coefficient), Gower’s measure (widely
known in the literature), two measures used for information
search in large text files (OF and IOF) and four measures
based on the probability of occurrence for a given feature in
the description of a rule or a group of rules (Goodall’s mea-
sures) [27, 28]. In this research, the author uses the same
set of similarity measures (in the experimental stage, each
of these methods was used). The measures have been widely
described by the author in [29, 30]; therefore, the issue is not
discussed again in this work.

For example, the similarity value simf based on the
wSMC equals 1 if rules ri and rj contain the same value
for the f attribute. Otherwise it equals 0. Hence, only if
rules ri and rj contain the same values for the every attri-
bute in their premises and weight wf is determined as
wf = 1/d for f = 1,… , d and d is the number of attributes,
then the similarity value sim ri, r j equals 1. If the rules
differ at least for one attribute, the value is less than 1.
Value 0 for sim ri, r j (in case of wSMC similarity mea-
sure) means that there was not even one attribute for
which rules ri and r j would have the same value.

Some of the analysed measures determine the similarity
of rules using the frequency f rif of occurrence of a certain
pair of attributes and its values in the entire set of rules (f rif
denotes the number of times a premise r jf appears in rules),
while others are based on probabilities pf rif (pf rif
denotes the sample probability of the case when a premise
rif appears in rules: pf rif = f pf rif /N).

3.3.2. Number of Clusters. To determine an optimum simi-
larity threshold might be impossible if the algorithm needs
to be made independent from the type of data. It must be
remembered that when similar rules are to be clustered,

the threshold has to be set up at a reasonably high level
or the clustering within a knowledge base can be initiated
for rules which are practically dissimilar to one another
and it might be impossible to reach a high level of similar-
ity. In [9, 10], the author has presented an approach based
on the termination of clustering when the intercluster sim-
ilarity is no greater than the intracluster similarity. Unfor-
tunately, the computations required for this approach are
too burdening as far as the clustering algorithm is con-
cerned. Another solution is the termination of clustering
at a certain level as an attempt to force upon the number
of clusters. Then, the AHC algorithm joins the rules and
their clusters as long as the assumed number of clusters
is reached. The above-described solution is presented in
this paper.

In the literature, there are multiple papers which deal
with the issue of an optimum selection of the number of
clusters in the clustering algorithms [31, 32]. The most
prevalent approach to be found in these papers underlines
the necessity to perform numerous iterations for a gradu-
ally changing number of clusters and then choosing an
optimum solution. Theoretically, it means that the number
of possible partitions for a knowledge base with N rules
equals N because, having 5 rules to cluster, we may place
every rule in 1 or 2, 3, 4 and even into 5 clusters. Of
course, the first and last solutions do not make sense
(we would achieve one big cluster with an entire set of
rules or 5 singular rule clusters). For this reason, the start-
ing parameter value pertaining to the number of groups is
2 and increases by 1 in every partition until the number of
clusters is smaller than the number of rules. If numerous
knowledge bases are concerned, such an approach would
not be time-effective.

The author has attempted to propose heuristics which
help to determine an optimum number of clusters. The num-
ber of clusters K to be created is calculated with respect to the
equations K1 = N + i ∗%N and K2 = N − i ∗%N .
K1 and K2 are the numbers of clusters to create, and N
denotes the number of rules. It is easy to see that the
modification consists in the clustering for a gradually
changing (one step at a time, iteratively relative to the var-
iable i, for i = 1, 2,… ) parameter K . Such a solution
makes it possible to find the optimal number of clusters
to create and does not require checking all possible scenar-
ios but only some of them. For example, in case of a heart
disease dataset with 99 rules, all the possible rule parti-
tions, based on the proposed heuristics, are as follows:
K = 1,… , 20. Hence, instead of generating 99 different
rule partitions, only 20 are created and analysed.

3.3.3. Clustering Methods. In this paper, the author has used
four most popular methods as found in the literature. The
first of them, the single-link method (SL), measures the
distance between clusters Rp and Rq as a minimum distance
between a random pair of rules ri and r j where ri ∈ Rp and
r j ∈ Rq. The second one is called the complete-link method
(CL) and defines the distance between the cluster Rp and Rq

as the longest distance between any two objects in two clusters.
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There are two more methods known in the literature—the
average link method and the centroid link method. The
former, marked as AL in this paper, measures the distance
between the luster Rp and Rq as an average distance of all pairs
of objects located within the examined clusters. The latter,
marked in this paper as CoL, always calculates the distance
between the clusters Rp and Rq as a distance between their
centroids. A centroid is a pseudo-objectwhose attribute values
are mean values of all objects in the cluster.

4. Proposed Approach

Having obtained groups which consist of similar rules, in
fact only a small part of the knowledge base is searched.
The previous object-by-object analysis, where the searched
objects need to match the knowledge in the most possible
way, can be reduced to matching the input data to each
cluster’s representative and selecting the best matching
representative.

4.1. Hierarchical Structure of a Knowledge Base. As the
resulting structure is one or more binary trees with M
number of nodes, it is easier to reduce the computing com-
plexity of the inference algorithm from the linear to the
log2M complexity as the former emerges from the necessity
of review of all rules in the knowledge base in order to find
a set of activable rules. The knowledge base’s structure with
rule clusters shall be defined as a sorted pair PR, Prof iles

PR where PR = R1, R2,… , RK represents the structure
of a K number of clusters and Prof iles PR = Prof ile R1 ,
Prof ile R2 ,… , Prof ile RK constitute a set of representa-
tives for these clusters (for K ≪N). The following two condi-
tions must be met: ⋃j=1,2,…,KRj = KB and Rl ∩ Rj =∅ for j ≠ l
and j, l = 1, 2,… , K . A hierarchical knowledge base contains a
structure of clusters of rules together with their representa-
tives. As a result of the application of the AHC algorithm
with a set criterion of stopping the agglomeration, we get
a number of clusters (equal to K) containing other rule
clusters or single rules. This structure is then searched in
the inference process.

4.2. Agglomerative Hierarchical Clustering: A Proposed
Approach. The pseudocodes of the hierarchical clustering
algorithm for rules and data-driven inference algorithm for
rule clusters are presented in Figure 1. Iteratively, until a
given number of clusters (K) is not achieved, at every step
of the clustering process, we create a similarity matrix for
all rule clusters. Each cell contains a similarity value for a pair
of rule clusters Rl and Rj. Then, we have to choose a matrix
cell with the biggest similarity. At the end of each iteration,
we create a new cluster Rq which contains the merged clusters
Rl and Rj and we remove the clusters from the structure PR
and add the new cluster Rq to it. The cluster analysis in effect
produces fairly homogeneous groups of rules together with
their representatives.

Figure 1: The pseudocodes of the hierarchical clustering algorithm for rules and the data-driven algorithm for rule clusters.
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4.3. Knowledge Extraction in Rule Clusters. The decision-
making process consists of extraction of new knowledge
based on both the rules in a knowledge base and the facts.
Since the rules have been merged into groups, the inference
process must apply to the rule clusters. The idea proposed
by the author is based on the method widely known in the lit-
erature within the domain of retrieval information systems
and searching within hierarchical structures. Rule clustering
with the AHC algorithm creates a hierarchical structure in
the form of a dendrogram. A similar structure was obtained
in the SMART system [33] where textual documents were
subject to clustering. The clusters therein were defined as
such sets of documents where each item is similar to all the
remaining parts of the set. The obtained hierarchy of docu-
ments was then searched through analysis of the similarity
between the groups’ representatives and the given query. At
each level of the hierarchy, the most similar group was cho-
sen. The process ended when the most relevant group (docu-
ment) was found [34]. The objective of the procedure is to
maximise the search efficiency by matching a request with
only a small subset of the stored documents, at the same time
minimizing the loss of the relevant documents retrieved in
the search. It is necessary to remember that cluster represen-
tatives are analysed; thus, the efficiency of searching within
documents depends on the quality of the representatives.
There are many possible ways to build a cluster representa-
tive. For example, document clusters can be represented by
the set of the features most common for all the documents
in a given cluster. The representative can be general or spe-
cific, which is very important in the context of inference effi-
ciency. General representatives as a short type description
may be easy to analyse but take more time to find a given
document. Specific representatives contain usually many fea-
tures in their descriptions and thus it takes much more time
to analyse one representative, but usually we can easily find a
given document.

In this project, the author works with rules in a knowl-
edge base which are a very specific data type and thus require
a specific way to manage them properly. They may have dif-
ferent lengths and may contain not only different attribute
values but, above all, completely different attributes, which
significantly affect the ability to compare them and to look
for similarities.

4.4. Rule Clusters’ Representatives. When a set of clusters has
been generated, it is possible to construct a representative
classification vector for each cluster, called a centroid vector,
such that the property assignment of the centroid reflects
the typical, or average, values of the corresponding property
values for all elements within each given cluster. Various
methods can be used to generate the centroid vectors. Con-
sidering the fact that rules in a knowledge base are a specific
type of data and most of the time those rules are recorded
with various types of data, the author proposes an approach
which considers both nominal and numeric features in a
representative’s description. To find out which form of a rep-
resentative (general or detailed) provides a greater effective-
ness of the resulting structure and inference processes, the
author proposes several different approaches. It should be

noticed that in her previous research [11], the author ana-
lysed also other methods of generating cluster representa-
tives. Each rule cluster Rq ∈ PR is assigned a representative
called a profile (Prof ile Rq ). In the basic approach (further
referred to as the threshold approach), a representative con-
sists of all such attributes which have appeared in k% of rules
in a given group (default k = 30%):

Threshold Rq = ∪ ps f requency getAttr ps
≥ k for ps ∈ cond ri , ri ∈ Rq ,

2

where f requency getAttr ps returns the number of times
when the attribute of a given premise ps appears in the con-
ditional part of all rules in the group Rq. If a given attribute
reaches a set threshold then, depending on its type, its value
(for symbolic features) or a mean (for numeric features) is
added to the representative.

As this method analyses only the attribute part in pairs
(attribute, value), the accuracy of the searching process may
not be as precise as it is for other methods. Finding similar
representatives with this technique means only that a rule
cluster containing a given attribute has been found.

The conditional and decision parts of every rule are cre-
ated from a given set of pairs (attribute, value). For the fol-
lowing set of attribute A = a, b, c, d, e, dec and their values
Va = a1, a2, a3 , Vb = b1, b2 , Vc = c1, c2 , Vd = d1, d2 ,
Ve = e1, e2 , and Vdec = A, B, C , we may consider a few
different scenarios (for simplicity’s sake, in the example
let us assume that all the attributes are at a nominal scale).
For the knowledge base KB = r1, r2, r3, r4 , the following
rules are

r1 a, a1 ∧ c, c2 ⟶ dec, A ,

r2 a, a2 ∧ c, c2 ⟶ dec, B ,

r3 b, b1 ⟶ dec, C ,

r4 a, a3 ⟶ dec, A

3

We may say that rule r3 is unlike the others (it is
described by other attributes) while rules r1 and r2 are
quite similar because besides the same premise c, c2 , they
also contain a similar premise with an attribute a. Rule r4
is (like rule r3) unlike others, but looking only at the attri-
bute part, we may say that it is more similar to rules r1
and r2 than rule r3, containing an attribute a.

Assuming that the selected clustering algorithm will
first join the rules r1 and r2 and then include rule r4 in
the same cluster, the representative created with the use
of the threshold method (with a k parameter set to value
50%) is Prof ile r1, r2, r4 = a, a1 , a, a2 , a, a3 , c, c2 .
Undeniable advantages of approximation of sets based on
the rough set theory can be found in numerous papers
such as [16–18]. The rough set is the approximation of a
vague concept (set) by a pair of precise concepts, called
lower and upper approximations. The lower approxima-
tion is a description of the domain objects which are
known with certainty to belong to the subset of interest,
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whereas the upper approximation is a description of the
objects which possibly belong to the subset. Using the
notions of lower and upper set approximation, a represen-
tative is created with the use of the lower/upper approxi-
mation method. The lower approximation method
defines a cluster’s representative as all pairs (attribute,
value) which appear in the conditional part of each rule
in the analysed cluster. Conversely, a cluster’s representa-
tive designated with the upper approximation method
shall contain all such pairs (attribute, value) which have
appeared in the conditional part of at least one rule in
the cluster. The definition of a lower approximation for
a group’s profile Rq is as follows:

LowerApp Rq = ∪ ps ∧
ri∈Rq

ps ∈ cond ri , 4

and an analogical definition for the upper approximation
method is

UpperApp Rq = ∪ ps ∨
ri∈Rq

ps ∈ cond ri , 5

where cond ri means the conditional part of the ri − th
rule, and ps is a single premise in this rule ri. The repre-
sentative for rule cluster r1, r2, and r4 using the lower
approximation-based method regrettably contains an
empty set, while using the upper approximation-based
approach it contains the following features: Prof ile r1, r2,
r4 = a, a1 , a, a2 , a, a3 , c, c2 . It is imprecise as it
contains the features which cover less that 30% of the
rules in a given group.

Hence, it seems justifiable to control the level of coverage
of features selected for group representatives. It has led to an
alternative way of creating cluster representatives, namely,
the weighted representative method. In this method, giving
weight (expressed as k%), a representative is created from
all pairs (attribute, value) which have appeared at least in
k% of rules in a given group.

Weighted Rq = ∪ ps ∨
ri∈Rq

ps ∈ cond ri &frequency ps ≥ k

6

The representative of a group of rules r1, r2, and r4
selected with the use of this approach (with a value of the
k parameter set at 50%) is Prof ile r1, r2, r4 = c, c2
because only this particular premise appears in at least
50% of the rules in this group. This clearly shows the differ-
ence between the threshold and weighted approach. It must
be emphasized that representatives of clusters are created
promptly with clusters of rules, and as a result, there might
be empty/blank representatives even though a cluster has
been created. This happens when the representative desig-
nation method is too restrictive (capture conditions for
some features in a representative are relatively high and dif-
ficult to fulfil) and simultaneously a stop condition has not
been reached as the created structure still has more groups

than the assumed threshold and the groups are continuously
clustered. Such restrictive requirements are the traits of the
lower approximation method. This method stipulates that
a feature included in a representative’s description is con-
currently a common feature of all rules that constitute a
cluster. This condition is usually too difficult to fulfil, espe-
cially when rules in a knowledge base are short and rarely
have common premises. In consequence, at some stage
(when groups are clustered into groups at a higher level of
hierarchy), there are clusters without representatives. Such
structures have to be avoided as they hinder a review of such
group and making use of clustering as a tool in the explora-
tion of knowledge bases. An excessive reduction of the
conditions examined in the course of designation of repre-
sentatives makes them too detailed and often inadequate
for the described clusters. For instance, using the upper
approximation method or setting up too low a threshold
for the designation of representatives in the weighted or
threshold representative methods (e.g., a 25% threshold)
for a cluster of four rules, when a given feature is included
as a premise in at least one rule, it is sufficient to be included
in the cluster’s representative.

4.5. Inference Process in a Hierarchical Knowledge Base. At
the core of big data analytics is data science (deep knowledge
discovery through data inference and exploration). A knowl-
edge representation requires some process that, given a
description of a situation, can use the knowledge to make
conclusions. When the knowledge is properly represented,
the inference reaches appropriate conclusions in a timely
fashion. Thus, the knowledge must be adapted to the infer-
ence strategy to ensure that certain inferences are made from
the knowledge. Inference in classic knowledge bases matches
the entire set of rules to the known facts to deduce new facts.
It is impossible to work on the entire set of rules and facts in
case of big knowledge bases. Therefore, in this and previous
research tasks [9], the author defines the model of the hierar-
chical knowledge base with rule clusters and rule clusters’
representatives.

Inference in a hierarchical knowledge base involves using
hierarchy properties to optimize the search of clusters of
rules. The results of inference and the course of the inference
process itself depend strongly on the goal of inference.

When considering the forward inference (data-driven),
we need to take into account the inference with a given
hypothesis to prove or without it. In the first case, we review
the representatives of clusters of rules at each level and even-
tually select the rule or rule cluster most relevant to the given
facts. If a selected rule can be activated, the result leads to the
addition of a new fact to the knowledge base. When this new
fact is simultaneously the goal of the inference, the process
should end successfully. When the goal of the inference is
not specified, we proceed as long as there are any rules that
can be activated. Thus, as a result, the implemented inference
algorithm leads to the exploration of a number of new facts,
and one of the measures of inference efficiency is, among
others, a percentage of new facts compared to the ones given
at the beginning. The more new facts, the more effective the
reasoning process is.
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In the classic approach, premises of each rule are exam-
ined to see whether they match the set of facts. If they do,
the rule is activated and its conclusion is added to the set of
facts. If this new fact is a given hypothesis to be proved, the
process ends successfully. If there is no given goal of infer-
ence, the process is repeated until there is at least one rule
to be activated.

In the approach proposed in this research, only represen-
tatives of the created rule clusters are analysed, which signif-
icantly shortens the time of inference. Usually, the number of
the created rule clusters is significantly smaller than the num-
ber of rules being clustered. However, the success of the infer-
ence process depends on the quality clustering and the
approach to creating the representatives. For the structure
of K clusters with their representatives, the inference process
looks as follows. For the given set of input facts, we are look-
ing at the representative clusters from the highest level in the
created hierarchical structure, and at every level of the hierar-
chy, going from the root to the leaves, we choose the cluster
most relevant to the facts. If the selected group is already a
single rule, and all its premises match a given set of facts, then
the rule is activated and its conclusion is added as a new fact
to the knowledge base. If the new fact is simultaneously a
given goal to be proved, the inference process is successful.
Otherwise, the search process continues until the requested
goal of the inference is confirmed or there are any rules to
activate. It is easy to see that in the most optimistic case the
process lasts only one iteration, during which one rule is acti-
vated and its conclusion matches the given goal of inference
which ends the process successfully. Of course, the inference
process succeeds also if the given hypothesis is proved in
more than one iteration, or if any rule was activated (when
no hypothesis was specified). For this reason, in the experi-
mental stage, the author examined the following cases: was
the goal specified, was it achievable, and was it eventually
achieved? It was additionally examined whether any rule
had been activated, how many rule clusters had been
searched, and if an empty representative had occured during
the searching process.

Verification of the correctness of the proposed solution
consists of comparing the result of the inference for a hierar-
chical knowledge base with rule clusters with the result
obtained for a classic knowledge base (without rule clusters)
and classic inference (analyzing all the rules one by one). In
the course of verification, it was checked how frequently the
specified goal of inference had been confirmed or any new
knowledge had been deduced from the rules and facts.

The pseudocode of the data-driven inference algorithm
for rule clusters is presented as Algorithm 2 in Figure 1.

The most important procedure is the one which makes it
possible to find the most relevant (to the set F) rule cluster
first and then the most relevant rule in the selected group.
For each cluster Ri, its representative Prof ile Ri is compared
to the set of facts F, and as a result, a group with the maxi-
mum similarity is selected (i = 1, 2,… , K). The review time
needed in the classic approach to search every rule is reduced
to the time needed to search cluster representatives. Most of
the time, K (number of clusters) is significantly smaller than
N (number of rules). The selected rule is activated, and the
inference process is finished successfully if the new fact is a
requested goal of inference. If not, the process is continued.

4.6. Analysis of the Proposed Idea. For a structure containing
about a thousand clusters of rules, about a dozen or so repre-
sentatives will be compared to find the group which is most
similar to the given information. Due to the logarithmic com-
putational complexity of the algorithm, the more rules we
group, the greater the time gain from browsing the cluster
structure is. This is undoubtedly the biggest advantage of
using this approach. Especially with big data sets, such solu-
tions are particularly useful. The disadvantage may be the
omission of other rules relevant to the given facts. This
approach is more optimal in relation to the approach pre-
sented in the author’s previous research [9, 10]. The optimi-
zation arises from the fact that if, at a given level of analysed
structure of rule clusters, the group selected as more relevant
contains other clusters (which means additional subsequent
searches), we check if the other cluster (omitted at this level,
less relevant) is not a single rule. If that is the case, and the
premises of this rule match the facts, such rule is activated
and makes it possible to finish the inference process earlier.

4.7. Example of Rule Clustering and the Inference Process for
Rule Clusters. Let us assume that a given knowledge base con-
tains five rules:

r1 a, a1 ∧ b, b1 ∧ c, c1 ⟶ dec, A ,

r2 a, a1 ⟶ dec, B ,

r3 d, d1 ⟶ dec, C ,

r4 d, d1 ∧ e, e1 ⟶ dec, C ,

r5 a, a1 ∧ d, d1 ⟶ dec, B

7

The course of the AHC clustering algorithm for this
knowledge base, in case of using the wSMC similarity mea-
sure, is presented in Figure 2.
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Figure 2: The course of the AHC clustering algorithm for a given knowledge base.
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As a result, two clusters of rules are generated: R1
which contains rules r3 and r4 and R2 which contains r1,
r2, and r5. The lower and upper approximation-based rep-
resentatives for these groups are as follows:

LowerApp Prof ile R1 = d, d1 ,

UpperApp Prof ile R1 = d, d1 , e, e1 ,

LowerApp Prof ile R2 = a, a1 ,

UpperApp Prof ile R2 = a, a1 , b, b1 , c, c1 , d, d1 ,
8

and there is also a given input set of facts F = a, a1 ,
b, b1 . The course of the inference, taking into account
the type of representatives, is presented in Table 1.

This basic example clearly illustrates how a representative
generation method influences the efficiency of the inference
process, producing different results. In case of the LowerApp
method, no rule would be activated and no new knowledge
would be extracted. When considering big data sets, one
should bear in mind that the chosen cluster representation
method can significantly affect the amount of new knowledge
extracted from the knowledge base of hundreds or thousands
of rules. The lower approximation method (producing gen-
eral descriptions for rule clusters) unfortunately can make
the process of discovering new knowledge from rules and
facts impossible (because of empty representatives).

5. Experiments

The experiments were aimed at investigating whether the
presented clustering methods (SL, CL, AL, and CoL) and
representative generation methods (Threshold, LowerApp,
UpperApp, and Weighted) influence the efficiency of
inference and the quality of created rule clusters. The
subjects of the experiments are four datasets: heart, libra,
weather, and krukenberg, with various numbers of
attributes and rules [14]. The smallest knowledge base
contains 5 attributes and 5 rules and the greatest number
of rules is two hundred, while the greatest number of
attributes is 165 elements. In the experiments, many pos-
sible combinations were examined for each knowledge
base: nine similarity measures, four clustering methods,
and four representative generation methods with three
various percentage thresholds and various numbers of
clusters. The total number of experiment equals 178,200,
and it results from the necessity of using all possible
combinations of different similarity measures, clustering
methods, cluster number, representative generation
methods (with various values of threshold k), and the
additional parameters related to the inference process such
as a different number of facts and the cases with a given
hypothesis to be proved or without any hypothesis. All
tables summarize the results obtained for the whole
178,200 of the experiments performed.

Tables 2–4 present the results of the analysis of the influ-
ence of using various methods for representatives of rule
clusters on the inference efficiency.

Table 1: The course of knowledge exploration for an example of knowledge base.

Step LowerApp(Ri) UpperApp(Ri) Threshold(Ri)/Weighted(Ri)

Representative generation
R1 = ϕ R1 = a, a1 , a, a2 , b, b1 , c, c1 R1 = a, a1 , b, b1

R2 = d, d1 R2 = d, d1 , e, e1 R2 = d, d1 , e, e1

Similarity between F and Prof iles
Sim F, R1 = 0 Sim F, R1 = 0 25 Sim F, R1 = 0 5
Sim F, R2 = 0 Sim F, R2 = 0 Sim F, R2 = 0

Choosing the most relevant group ϕ R1 R1

Finding rule for activation ϕ

Sim F, r1 = 0 33 Sim F, r1 = 0 33
Sim F, r2 = 1 Sim F, r2 = 1
Sim F, r3 = 0 Sim F, r3 = 0

Activated rule ϕ r2 r2

New facts ϕ dec, B dec, B

Table 2: Inference efficiency vs. representative generation methods.

Representative
generation method

New knowledge
Goal not achieveda Goal achieved

Less than 100% At least 100%

Threshold 23,145 (48.71%) 24,375 (51.29%) 40,657 (85.56%) 6863 (14.44%)

LowerApp 5692 (47.91%) 6188 (52.09%) 10,459 (88.04%) 1421 (11.96%)

UpperApp 6377 (53.68%) 5503 (46.32%) 9277 (78.09%) 2603 (21.91%)

Weighted 22,901 (48.19%) 24,619 (51.81%) 41,036 (86.36%) 6484 (13.64%)
aEmpty representative found during inference.
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Table 2 presents the frequency of finishing the inference
successfully (the goal of the inference has been reached or/
and any new fact was induced from rules and facts already
known) and the frequency of exploration of at least 100%
of new knowledge (new facts) in accordance with the input
knowledge. Table 3 presents a description of created
clusters dependent on different representative generation
methods in the form of the following factors: BCS (biggest
cluster’s size), O (the number of outliers), and ARL/BRL
(average/biggest representative’s length). Table 4 contains
a description of inference efficiency presented as an average
number of fired rules, an average number of empty repre-
sentatives, and the average number of new facts as well as
the number of the searched clusters. It is easy to observe
that the representative generation method which allows
confirming a given goal most often is the UpperApp
method (in 21.91% of cases while the LowerApp method
allows us to confirm the goal only in 11.96% of cases). If
we aim to achieve a lot of new facts (new knowledge), then
the representative generation method which allows to get
the new knowledge exceeding 100% of input knowledge is
the LowerApp method (in 52.09% of cases). The New
knowledge column with the value At least 100% corre-
sponds to the case where for a given set of input facts, at
least the same number of new facts was generated during
the inference process.

The UpperApp method generates the biggest cluster size,
the greatest number of outliers, and a much wider range of
representatives than it is in case of other representative
generation methods. Only for the UpperApp and Threshold
representative generation method are empty representatives
not generated at all.

Tables 5–7 contain similar information as Tables 2–4 but
for various clustering methods.

The SL clustering method makes it possible to confirm
a given goal of inference most often. This method also
generates the smallest size of the biggest cluster, the smallest
number of outliers, and the shortest lengths of the generated
representatives for the created rule clusters. The above-
mentioned method also yields the smallest number of fired
rules, the earliest time of achieving empty representatives,
and the smallest number of searched clusters.

6. Conclusions

The decision support systems founded on rule-based knowl-
edge representation should be equipped with rule manage-
ment mechanisms. Effective exploration of new knowledge
in every domain of human life requires new algorithms of
knowledge organization and searching of created data struc-
tures. Optimization proposed by the author in this paper is
based on the cluster analysis method and modification of

Table 3: The quality of rules clusters vs. representative generation methods.

Representative
generation Method

BCS O ARL BRL
Mean SD Mean SD Mean SD Min–Max Mean SD Min–Max

Threshold 76.68 59.18 3.93 5.66 4.05 3.08 0.0–9.75 5.85 3.63 0.0–14.0

LowerApp 78.46 60.45 3.70 5.43 1.39 0.60 0.6–3.75 2.71 1.90 1.0–9.0

UpperApp 80.94 61.34 3.97 5.98 25.94 37.60 2.2–279.0 86.79 94.28 4.0–279.0

Weighted 77.72 59.21 3.85 5.57 4.13 3.59 0.0–14.5 6.83 6.83 0.0–19.0

Table 4: Description of inference efficiency vs. representative generation methods.

Representative
generation method

Fired rules
Empty

representative
New facts Searched clusters

Mean SD Mean SD Mean SD Mean SD

Threshold 5.31 21.69 0.0 0.0 0.92 1.95 54.53 102.35

LowerApp 5.65 23.31 71.13 60.55 0.79 1.67 62.05 111.50

UpperApp 11.53 31.68 0.0 0.0 1.32 2.63 95.14 121.03

Weighted 4.64 19.93 30.45 48.67 0.82 1.69 52.52 101.17

Table 5: Inference efficiency vs. clustering methods.

Clustering method
New knowledge

Goal not achieveda Goal achieved
Less than 100% At least 100%

SL 14,721 (49.57%) 14,979 (50.43%) 24,941 (83.98%) 4759 (16.02%)

CL 14,182 (47.75%) 15,518 (52.25%) 25,122 (84.59%) 4578 (15.41%)

AL 14,517 (48.88%) 15,183 (51.12%) 25,795 (86.85%) 3905 (13.15%)

CoL 14,695 (49.48%) 15,005 (50.52%) 25,571 (86.10%) 4129 (13.90%)
aEmpty representative found during inference.
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the inference algorithm, which searches within representa-
tives of the created rule clusters instead of rules. This article
presents both the description of the proposed approach and
the results of the experiments carried out for the chosen
knowledge bases.

Among various clustering algorithms, the agglomerative
hierarchical clustering algorithm was selected with a modifi-
cation proposed by the author in which rule clusters are built
until a given number of clusters is reached. For every rule
cluster, a representative is created. During the inference
process, only representatives are analysed, and at every level
of the created hierarchical structure, the most relevant
representative is selected and further analysed. This means
it is possible to search only a small part of the whole knowl-
edge base with the same accuracy that would be achieved
when the whole knowledge base is searched. During the
previous experiments, it was shown that for big knowledge
bases (with more than a thousand of rules), only 1.5% of
the whole KB has to be analysed to finish the inference
process successfully. For every combination of the clustering
parameters such as similarity measures, number of clusters,
and others—Tables 2–4 present the results of the described
and examined methods of the cluster representative genera-
tion. Tables 5–7 present the results for four different cluster-
ing methods, respectively.

As expected, the UpperApp representative method cor-
responds with creating the biggest size and the largest repre-
sentatives of the created clusters. As a result, this method
leads to a successful conclusion more frequently. Therefore,
it is recommended to consider further analysis of both the
representative generation methods and the inference algo-
rithm in order to propose new optimizations and achieve
a higher efficiency.

Data Availability

The readers can access the data through the link: http://zsi.
tech.us.edu.pl/~nowak/data.rar where original four datasets
and four report files generated during the experimental stage

are uploaded. The original knowledge bases and associated
files with set of facts were used as input data for the CluVis
software (implemented by the author) to build a hierarchical
structure of every knowledge base and then to run the infer-
ence process. The results are report CSV-type files with infer-
ence efficiency measures such as factors calculated during the
experiments.
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