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The Fulde–Ferrell–Larkin–Ovchinnikov phase, with a spatially oscillating order parameter, may be induced
by strongly magnetic field at low temperature. It is believed that the Fulde–Ferrell–Larkin–Ovchinnikov phase can
exist only in homogeneous superconductors, and even weak impurity potential can lead to its destruction. The
analysis of the Fulde–Ferrell–Larkin–Ovchinnikov phase in the Bogoliubov–de Gennes equation shows however,
that this phase can exist in the presence of weak disorder. Using Bogoliubov–de Gennes equations, we discussed
the influence of diagonal and off-diagonal disorder on the Fulde–Ferrell–Larkin–Ovchinnikov phase.

PACS numbers: 74.20.Fg, 74.20.Mn, 74.20.Rp, 74.25.Dw, 74.81.−g

1. Introduction

In the 1960’s Fulde and Ferrell [1] along with
Larkin and Ovchinnikov [2] suggested the possibil-
ity of existence of an unconventional superconducting
state with a spatially oscillating order parameter (OP).
This phase, called the Fulde–Ferrell–Larkin–Ovchinnikov
phase (FFLO), is characterized by changes of the sign of
OP in real space. This phase occurs at low temperature
in the presence of a strong magnetic field. In the FFLO
phase, the Cooper pairs have non-zero center-of-mass mo-
menta [3]. It is a widely held belief that the FFLO phase
can exist only in homogeneous superconductors, and even
weak inhomogeneity can lead to its destruction [4]. How-
ever, the analysis of the FFLO phase carried out within
the method of the Bogoliubov–de Gennes (BdG) equa-
tions, has shown that this phase can also exist in the
presence of weak disorder. It is equally possible for the
s-wave [6, 5] and the d-wave superconductors [7–9].

In the FFLO phase the OP can be expressed as a com-
position of plane waves

∆(Rj) ≡ 〈cj↓cj↑〉 =
M∑

m=1

∆Qm
exp(iQm ·Rj) , (1)

where Qm represent the considered values of the Cooper
pairs momentum. Analysing the superconducting phase,
we will discuss: the BCS phase (for M = 1 and Q1 = 0,
resulting in constant value of the OP), the FF phase (for
M = 1 and Q1 6= 0, resulting in ∆(Rj) ∼ exp(iQ1 ·Rj)),
the LO phase (for M = 2 and Q1 = −Q2 6= 0, resulting
in ∆(Rj) ∼ cos(iQ1 ·Rj)) and the FFLO phase in gen-
eral (for unconstrained real space profile of ∆(Rj)). The
major question is what influence the chosen value of M
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has on the stability of the FFLO phase in inhomogeneous
systems.

2. Model

We consider a model with local on-site pairing inter-
action, described by the Hamiltonian

H =
∑

〈i,j〉,σ
(−tij) c†iσcjσ +

∑

i,σ

(−µ− σh + wi) c†iσciσ

+ U
∑

i

c†i↑ci↑c
†
i↓ci↓ , (2)

where tij is the nearest-neighbor (NN) hopping integral
between the i-th and j-th site, µ is the chemical potential,
h is the Zeeman term for external magnetic field, wi is
the impurity potential at site i, and U < 0 denotes pair-
ing potential. Recent investigations of the FFLO phase
in the attractive Hubbard model have been motivated
mostly by the increasing interest in the ultracold Fermi
gases [10, 11]. These approaches may also be applicable
to compounds other than the strongly correlated heavy
fermion systems [6, 12], where intersite pairing should be
considered.

In our approach we neglect electronic correlations,
which in the presence of magnetic field may lead to spin-
-dependent effective mass [13]. Due to this effect, FFLO
sets on at much weaker magnetic field, when compared
to the non-interacting case. Similar effect may origi-
nate also from the repulsive pair hopping interaction [14].
Moreover, electronic correlations may lead to a highly
non-trivial interplay between magnetism and the FFLO
superconductivity [15]. In disordered systems one may
also expect that the pairing interaction becomes a site-
-dependent quantity [16]. An additional limitation of the
present approach originates from the assumption that the
magnetic field is parallel to the superconducting plane.
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Otherwise, orbital effects should be explicitly taken into
account [17].

We examine two types of disorder: diagonal and off-
-diagonal ones. We assume that in an inhomogeneous
system the sources of the disorder are nonmagnetic im-
purities located in random sites of the lattice. In the case
of the diagonal disorder we assume that tij = t0 for all
sites. At sites where the impurities are located, we as-
sume that wi = w 6= 0. In other sites wi = 0. For the
off-diagonal disorder we assume that wi = 0. We con-
sider the hopping integral between the NN lattice sites.
If impurities are absent at sites i and j, then: tij = t0.
In other cases tij = t0 +∆t, where ∆t

t0
∈ (0,−1) (t0 is the

energy unit).
The Hamiltonian given by Eq. (2) can be diagonalized

in the mean-field approximation through the following
transformation:

ckσ =
∑

n

(
uknσγnσ − σv∗knσγ†nσ̄

)
, (3)

where γnσ and γ†nσ are the quasiparticle operators, uknσ

and vknσ are the BdG eigenvectors. We then obtain the
self-consistent BdG equations

Enσ

(
uinσ

vinσ̄

)
=

∑

j

(
Hijσ ∆ij

∆∗
ij −H∗

ijσ̄

)(
ujnσ

vjnσ̄

)
, (4)

where Hijσ = −tij + (−µ − σh + wi)δij is the single
particle Hamiltonian, ∆ij = U∆Rj δij is the OP with
s-wave symmetry. Using the BdG equations, we analyze
spatial profile of the OP.

3. Details of calculations

We investigate two cases, in which the OP is given as
in the FFLO phase and the LO phase. For a system
with the FFLO phase, the spatial decomposition of the
OP is unconstrained. Then, all values of the Cooper pair
momenta are admitted

∆(Rj) = 〈cj↓cj↑〉
=

∑
n

[
ujn↑v∗jn↓f(En↑)− ujn↓v∗jn↑f(−En)

]
, (5)

where f(E) = 1
exp(βE)+1 is the Fermi–Dirac distribution

function. For a system with the LO phase, we take two
opposite values of Cooper pair momenta. For this sake we
calculate the Fourier transform of the following quantity:

∆̃(Rj) =
∑

n

[
ujn↑v∗jn↓f(En↓)− ujn↓v∗jn↑f(−En)

]

=
M∑

m=1

∆m exp(iQm ·Rj) . (6)

We choose two values of m, m1 and m2, such that ∆m

is maximal and Qm1
= −Qm2

= Q. Then, the OP takes
on a standard form for the LO phase

∆Rj = 2∆0 cos(iQ ·Rj) . (7)
Numerical calculations were performed for the 2D

square lattice: Nx = 32, Ny = 30, with periodic bound-
aries. The impurities were located in 51 random lattice

sites (which corresponds to a 5.5% concentration). Addi-
tionally we impose: U = −2.0t0, µ = −0.4t0 and kT = 0.

4. Numerical results and discussion

The comparison of the phase diagrams obtained for the
LO and the FFLO phases (Fig. 1) shows a significant dif-
ference between critical magnetic fields. This difference
originates from the restriction imposed on the allowed
momenta of the Cooper pairs in the case of LO super-
conductivity. This, in turn, causes a large decrease of the
critical magnetic field, both for diagonal and off-diagonal
disorder. Higher critical magnetic field obtained for the
FFLO phase originates from the fact that the impurities
modify the spatial profile of the superconducting OP, as
presented in Fig. 2 and Fig. 3. One can see that the re-
sulting profile of the OP in the FFLO phase significantly
differs from the cosine function that is characteristic for
the LO phase. Then, the Fourier decomposition of ∆(Rj)
for the FFLO phase, given by Eq. (6), consists of many
modes. The projection on the LO phase (see Eq. (7))
lowers the magnitude of the OP, and, as a consequence,
is responsible for lower stability of the LO superconduc-
tivity.

Fig. 1. Phase diagrams for diagonal (a) and off-
-diagonal (b) disorder. Left parts depict results for the
LO phase, and right parts for the FFLO phase. SRO-SC
stands for superconductivity with short range order, i.e.,
∆(Rj) 6= 0 only in the vicinity of impurities. Crosses
mark the parameters for the results presented in Fig. 2
and Fig. 3.

In the case of the diagonal disorder (Fig. 2b), one can
observe a decrease of the OP in the vicinity of impurities.
Eventually for strong impurity potential the OP vanishes
at these sites. This result originates from modification
of the local charge concentration. On the other hand,
in the case of the off-diagonal disorder (Fig. 3b), the
OP increases in the vicinity of impurities. For strong
magnetic field ∆(Rj) is non-zero only at site located close
to impurities (SRO-SC phase in Fig. 1b). It appears
as a result of relative increase of the pairing potential
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Fig. 2. Spatial profile of the OP in the case of diagonal
disorder for h = 0.24t0 and w = 3t0. Part (a) depicts re-
sults for the LO phase, and part (b) for the unrestrained
FFLO phase.

Fig. 3. Spatial profile of the OP in the case of off-
-diagonal disorder for h = 0.3t0 and ∆t = −0.5t0. Part
(a) depicts results for the LO phase, and part (b) for
the unrestrained FFLO phase.

relative to a modified hopping integral between the site
with impurity and its NN.

In this paper we used the BdG equations to discuss the
influence of the diagonal and the off-diagonal disorder on
the FFLO phase. We have demonstrated that, in the
presence of impurities, the standard LO phase may be
unstable against formation of the FFLO superconductiv-
ity with a much more complicated spatial profile of the
OP. Hence, when analysing the FFLO phase in inhomo-
geneous systems, we must consider all possible Cooper
pair momenta in the Fourier decomposition of the OP
(all possible values of M in Eq. (1)).
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