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U si ng the exact decompositio n of the sc lattice into a set of inte racting
dimers (each dimer is descri bed by the extended H ubbard H amiltonian ) and
exact solution of the dimer problem (preceding paper) we exactly Ùnd the
form of the extended H ubbard model in the case of a crystal in the large U

limit . We apply a new , nonp erturba ti ve approach based on the exact pro j ec-
tion pro cedure onto a dimer subspace occupied by electrons in this limit (it
is the only assumption). T he resulting H amiltonia n is very complicated and

contains a variety of multiple magnetic and nonmagneti c interactions deeply
hidden in its original form (site representation). W e also present a simpliÙe d
version of the mo del to better visuali ze a mixture of di˜erent interactions
resulting from this approach.

PAC S numb ers: 71.10.{w , 71.10.Ca, 71.10.Fd

1. I n t rod uct io n

The tendency of electrons to avoid each other is very well kno wn in the the-
ory of strongly correl ated electron system s (see e.g. R efs. [1, 2] f or a revi ew). Thi s
tendency , identi fyi ng in thi s way stro ngly correl ated system s, can be expressed
by the condi ti on U ƒ W ( U | intra site Coulom b repul sion, W | band wi dth
of the conducti on band). In the l imi t U ƒ W (l arge U l im it) the second- order
perturba ti on theo ry appl ied to such system s leads to the well -known t À J m odel
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(see Ref. [3]) describing indi rect exchange intera cti on between electron spins lo-
cated on di ˜erent latti ce sites. The populari ty of the t À J m odel has enorm ously
increased in recent years after the suggestion, Ref. [4], tha t the electro nic proper-
ti es of high-T c superconducto rs can be described wi th the use of thi s m odel (see
e.g. R efs. [2, 5 ] for a revi ew and papers cited therei n). Thi s fact strongly enhances
the im porta nce of the t À J m odel in the physi cs of stro ngly correl ated electron
system s.

The t À J m odel can be deri ved by appl yi ng perturba ti on expansi on or canon-
ical tra nsform ati on (see R efs. [3, 6{ 10] and also [2, 5] for a revi ew) to the Hubba rd
Ha mi l to nian, R ef. [11], where one ta kes into account tha t in the stro ng correla ti on
l im it W =U i s very smal l . In other wo rds, each of these metho ds is equi valent to the
perturba ti on expansi on wi th respect to W =U . It is, however, possibl e to pro pose
qui te general appro ach and to derive the resulti ng Ha mi l to nian in the large U l im it
wi tho ut using perturba ti on expansion and perform the calculati on for a m ore gen-
era l case of extended Hubba rd m odel (see preceding paper [12]). In R ef. [12] we
have presented the exact decom positi on of the origina l extended Hubba rd m odel
for the sc latti ce (i t can be general ized to any latti ce, to o) into a set of intera cti ng
di mers where each di mer probl em has been exactl y solved (see (12) in R ef. [12]).
The m etho d has been tested in R ef. [12] for a di mer (the smallest compl ex of in-
tera cti ng ato m s), described by the extended Hubba rd model (see (3) in R ef. [12]).
The dim er energy spectrum consists of 16 energies, 6 of them in the large U l im it
ta ke on large, positi ve values (see (12) in R ef. [12]), m uch larger tha n the other.
It m eans tha t the mentio ned 6 levels, produci ng negl igible smal l term s in the par-
ti ti on functi on cannot be occupied by electrons and theref ore we can reject them
from the considerati ons in the large U l imi t. T aki ng thi s into account we could
rewri te the di m er Ha mi l to nian in the large U l imi t (see (22) in Ref. [12]) and af ter
intro duci ng Hubba rd operato rs and spin operators (see (23), (24) in Ref. [12]) we
were abl e to present the dim er Ham i lto ni an in the second quanti zati on. The Ùnal
form of thi s Ham i lto ni an is nothi ng else but a general izati on of the t À J m odel (see
e.g. R ef. [3]) resul ti ng from the extended Hubba rd model (see (28) in Ref. [12]). It
is im porta nt to stress tha t we have obta ined thi s result in a nonperturba ti ve way
usi ng only the reducti on of the ful l dim er space (16 eigenvectors) to the subspace
of 9 states, occupied by electrons in the large U lim it. W e have also shown tha t
exactl y the same result (see Sec. 4 in Ref. [12]) can also be deri ved wi th the use
of the pro jecti on techni que (pro jecti on onto the occupied dim er states). A further
general izati on of thi s techni que for the case of a crysta l is given in the present pa-
per. The resulti ng extended Hubba rd Ha mi l to nian in the large U l im it, obta ined
in the nonperturba ti ve way, is very compl icated. It shows, however, in an expl icit
wa y a structure of many m ulti ple m agneti c, \ quasi-magneti c" and nonm agneti c,
competi ti ve intera cti ons, deeply hi dden in the ori ginal version of the m odel .
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2. E xt en d ed Hu b bar d m odel in t he lar ge U l i m i t

In the precedi ng paper [12] we exactl y solved the eigenvalue probl em of the
Hubba rd di mer whi ch al lowed to express the dim er Ham i l tonia n in the form

H D =
X

˜

E ˜ j E ˜ i h E ˜ j ; (1)

where E ˜ and j E ˜ i were given by the expressions (12) in R ef. [12]. Af ter excludi ng
from the considerati ons unoccupi ed dim er energy levels (E 2 2 ; E 2 3 ; E ; E ;

E ; E ; E ) we deri ved the second quanti zati on form of the dim er Ham i lto ni an

(deno ted by H
D

) in the large U l imit (see (28) in R ef. [12]). We obta ined exactl y
the same result wi th the use of the pro j ection techni que (see Sec. 4 in R ef. [12]).
A simi lar appro ach, after several modi Ùcati ons, can be appl ied in the case of a
crysta l (sc latti ce). The extended Hubba rd Ham i l tonia n (see (2) in Ref. [12]) can
also be wri tten in a sim i lar form to (1). W e can wri te

H =
X

E j E ih E j ; (2)

where, in contra ry to (1), the energies E and j E i are unkno wn. W e can, however,
expand the eigenvecto rs j E i into the series of the dim er eigenvecto rs (cf . (12) in
R ef. [12])

j E i =
X

c j E i . . . j E i ; (3)

assuming tha t the crysta l consists of M di mers. Inserti ng (3) into (2) we get

H =
X

E
X

c c j E i . . . j E ih E j . . . h E j : (4)

It is clear tha t to obta in the extended Hubba rd Ham i lto nian for large U we
have to pro j ect (4) onto the subspace of the lower lyi ng dim er states wi th the use
of the pro jecti on operato r

P = P P . . . P ; (5)

where P i s given by (32) or (33) in Ref. [12] (the om itted in R ef. [12] di mer index
I = 1 ; 2 ; . . . ; M shoul d actua l ly be added). Simi larl y to (34) in [12] we denote
the extended Hubba rd Ham i lto nia n in the large U l im i t by H . Thus, we deÙne

H = P H P (6)

and we use H in the form given by the expression (2) in Ref. [12]. T aking into
account tha t P = P ( P = P ; [P ; P ] = 0 ) we obta in
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H = P

hX

I

H
D

I
À t

X

I ; ¥

±
c

+

I ; 2 ;¥
c I + 1 + c c

²

À t
X ±

c c + c c

²
+ J

X
n n

+
J

2

X À
n n + n n

Â
+ J

X
n n

+
J

2

X À
n n + n n

Âi
² P H : (7)

The operato rs c ( c ) have the sam e meaning as (36) in R ef. [12] and
the correspondi ng expressions for them (after addi ng the di mer index I ) are given
by (37), (38) therei n. The operato rs n in (7) are deÙned by the relati on

n = P n P : (8)

Intro duci ng Hubba rd operato rs and spin operato rs (see (23) and (24) in
R ef. [12]) we can Ùnd

n = S

ê

1 À

n

2

!

+
n

2

ê

1 À

n

2

!

+ Ù

"

S S À

n n

4

+ S S + S S À n S + n S +
n

4
(1 À n ) +

n

4
(1 À n )

À

1

4
n n +

1

2
(b a a b + b a a b )

+
1

2
( a a a a + a a a a )

#

+ £ ( a b + a b + b a + b a ) ; (9)

n = À S

ê

1 À

n

2

!

+
n

2

ê

1 À

n

2

!

+ Ù

"

S S À

n n

4

+ S S + S S + n S À n S +
n

4
(1 À n ) +

n

4
(1 À n )

À

1

4
n n +

1

2
(b a a b + b a a b )

+
1

2
( a a a a + a a a a )

#

+ £ ( a b + a b + b a + b a ) : (10)
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The expression for n I ; 2 ;¥ (¥ = " ; # ) can easily be obta ined by repl acing 1 $ 2

in (9) and (10). The coe£ cients Ù and £ are given by (42) in Ref. [12]. T o obta in

the second quanti zati on form of H (see (7)) we shoul d insert (37) and (38) f rom
R ef. [12], as well as (9) and (10) into (7). In thi s wa y we obta in the second quanti -

zati on form of H in the large U l imi t. It is, in pri nci ple, possible to wri te down the
expl icit, Ùnal form for the Ham i lto nian H . The form ula, however, is unf ortuna tel y
to o long to present i t here (to o m any term s resulti ng from many m ul tipl icati ons in
(7)). Theref ore we restri ct oursel ves only to indi cate the existence of a variety of

di ˜erent intera cti ons, contri buti ng to H and to present a sim pl iÙed version of thi s
Ha mi l to nian in the next section. It is easy to see tha t, general ly, H conta ins the
term s independent of Ù and £ , however, the term s proporti onal to Ù; £; Ù 2 ; £ 2 and
Ù£ appear also in the Ùnal form for H . Because the operato rs c I ; ˜ ; ¥ ( c+

I ; ˜ ;¥
) and

n I ; ˜ ;¥ (˜ = 1 ; 2 ; ¥ = " ; # ) conta in spin operators (see (37), (38) in Ref. [12] and

(9), (10) (present paper)) the resulti ng Ha m il to nian H consists of many m agneti c
(f errom agneti c, anti ferrom agneti c) and m ore com plex intera cti ons competi ng one
wi th another. The structure of the to ta l Ha mi l to nian H in the large U lim it tha t
we are interested in (see (6) and (7)) is much more com pl icated due to the presence
of the pro jector P (see (5)) on the left hand side of (7). The operator P itsel f is
a pro duct of al l P I pro j ectors (see (33) in R ef. [12]). It m akes the structure of the
to ta l Ha mi l to nian H m uch m ore compl ex, resul ti ng in sums of pro ducts of many
m ulti ple m agneti c and nonm agneti c, competi ti ve intera cti ons, deeply hidden in
the origina l version of the extended Hubba rd m odel , wri tten in the W anni er rep-
resentati on (see (1) in Ref. [12]). W e have obta ined thi s result usi ng the exact
di mer representa ti on of the constructi on operato rs (see (37), (38) in Ref. [12]) and
(9), (10) (present paper) in the large U l im it. The presence of a vari ety of many
m ulti ple m agneti c and nonm agneti c intera cti ons in the resul ti ng Ham i l toni an H

(see (7)) has very stro ng, Ùnal consequences. It enti rely expl ains how di £ cul t and
del icate is the pro blem to Ùnd the therm odyna m ical properti es of the model in the
appro xi m ate way (the exact soluti on of the m odel does not exist ti l l now). The
use of the m ost sophisti cated metho ds does not rem ove a danger to overesti m ate
the ro le of some im porta nt intera cti ons and to underesti mate the other, pro duci ng
in thi s way arti facts. It is the reason why the resul ti ng therm odyna m ical proper-
ti es of the extended Hubba rd model so strongly depend on the qual i ty of appl ied
appro xi m atio ns.

3. Sim pli Ùed ver sion of t he m odel in t he lar ge U l i m i t

The enorm ously hi gh com plexi ty of the model (7), presented in Sec. 2, can
easily be demonstra ted in a m ore expl icit way. T o do i t, we perform sim pl iÙcati ons,
described beneath. W e can e.g. appl y the Tayl or expansion wi th respect to two
smal l param eters x = t= U and x = J =U in the expressions (37) and (38)
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from Ref. [12], as well as in (9) and (10) (present paper). It seems to be, however,
m ore reasonable to cho ose another way. Starti ng wi th typi cal values for the band
wi dth W = 1 eV and U = 5 eV we can see tha t x = 1

6 0
(W = 1 2 t for the sc

latti ce). Assum ing tha t J (2 ) = 0 : 1 eV we obta in x (2 ) = 1

5 0
. Thus, intro duci ng

x = 1

6 0
and x (2 ) = 1

5 0
into the expressions for Ù and £ (see (42) in Ref. [12]) we can

Ùnd Ù ¤ 0 : 0 0 0 5 8 and £ ¤ 0 : 0 1 7 ¤ 3 0 Ù . In other words we can neglect the term s
pro porti onal to Ù in (37) and (38) of Ref. [12] and also in (9) and (10) excludi ng also
doubl e occupati ons (n b

I ; 1 (2 )
¤ 0 ) in the large U l imi t (see (30a) in Ref. [12]). The

sam e can be said about the operato rs a
I ;1 (2 )

and a in (41a,b) of R ef. [12]

where we neglect the term s proporti onal to Ù , and we put again n ¤ 0 in

(41b) of Ref. [12]. T aki ng into account tha t £ § £ we can consequentl y perform

al l the calcul ati ons, concerni ng H and H (see (7)) to obta in the Ùnal resul t as a
l inear form in £ (neglecting al l the term s proporti onal to Ù; Ù ; £ and Ù£ ). Using

thi s appro ach we Ùrst Ùnd the simpl iÙed form for H (see (28) in R ef. [12]) and
P (see (33) in R ef. [12]). We obta in

H = H (0 ) + £H (1 ) ; (11)

where

H (0 ) = À t ( a a + a a ) + 2 J S ÂS +
n n

4

À 2 J S ÂS À

n n

4
; (12)

H (1 ) =
4 t

1 À x
Â À

n n

4
+ J Q ; (13)

Q = (a b + b a ) ; (14)

and

P = 1 + £ Q : (15)

Simi larl y to (11) we can decom pose H (see (7)) when neglecting the term s pro-
porti onal to Ù in (37) and (38) of Ref. [12], as well as in (9) and (10). Appl yi ng
thi s procedure we get

H = H (0 ) + £H (1 ) (16)

where
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H (0 ) =
X

I

H
D

I
(0 ) À t

X

I ;¥

( a +
I ;2 ; ¥

a I +1 + a a ) À t
X X

a a

+2 J
X ˚

S ÂS +
n n

4

Ç

À 2 J
X ˚

S ÂS À

n n

4

Ç

+ J
X X ˚

S ÂS +
n n

4

Ç

À J
X X ˚

S ÂS À

n n

4

Ç

; (17)

H (1 ) =
X

H
D

(1 ) À t
X

( a a + a a + a a

+ a a ) À t
X X

( a a + a a )

+ t
X

S Â [( a a À a a ) + ( a a À a a )]

+ t
X

S Â[ ( a a À a a ) + ( a a À a a )]

+ t
X

[ S Â (a a + a a ) + S Â( a a + a a )]

+ t
X

[ S Â (a a + a a ) + S Â( a a + a a )]

+ t
X X

f S Â[ ( a a À a a ) + ( a a À a a )] g

+ t
X X

f S Â( a a + a a ) + S Â ( a a + a a ) g

+
( J + J )

2

X X
[ n ( a b + b a )

+ n ( a b + b a )] + 2 ( J À J )
X

[ S Â (s À s

+ s À s ) + S Â( s À s + s À s )] +
( J + J )

2

È

X X
n ( a b + b a + a b + b a )

+2 ( J À J )
X X

S (s À s + s À s ) ; (18)

where
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s z
I ; ˜ ; ˜

=
1

2
( a +

I ; ˜ ; "
bI ; ˜ ; "

À a +
I ; ˜ ; #

bI ; ˜ ; #
) ;

s = ( s ) =
1

2
( b a À b a ) ;

a = b + a a b + a
n

2
; (19)

and b i s given by (41b) in Ref. [12] where we put n ¤ 0 in the large U

l im it and ˜ = 1 (2) i f ˜ = 2 (1). W e see tha t in spite of appl yi ng appro xi mate

pro cedure the form ula f or the Ha mi lto nian H , given by (16), (17) and (18) is very
compl icated and very long. It conta ins, however, a ll term s independent of £ and
pro porti onal to £ . The sim pl iÙed form of the extended Hubba rd model in the large
U lim it (7) tha t we are interested in is given by

H = P H ¤ (1 + £ Q ) H ¤ H (0 ) + £ Q H (0 ) + H (1 ) ; (20)

where we have again reta ined onl y the term s independent of £ and proporti onal
to £ . The form ulae for Q ; H (0 ) , and H (1 ) are given by (14), (17), and (18),
respect ively. The sim pl iÙed form of the extended Hubba rd model in the large
U l imi t (20) shows a vari ety of di ˜erent magneti c and nonm agneti c intera cti ons

app eari ng in H (0 ) ; Q H (0 ) and H (1 ) when looki ng at (17), (14) and (18).
W e can Ùnd Ising-typ e intera cti ons, Hei senberg-typ e intera cti ons and also m ore
compl ex Hei senberg intera cti ons (see (17), (18)) where the local ized spin operato r
is mul ti pli ed by a term simi lar to spi n operato r whi ch \ tra nsports" electro n spin
from one latti ce site to the other (as e.g. the fourth and next f ew term s in (18)),
pro duci ng in thi s way \ quasi-magneti c" intera cti ons. Al l of these intera cti ons,
present in the simpl iÙed form of the Ham i lto nian (20) wi l l be of a m uch m ore

compl ex nature when one includes to H (see (16)) al l term s pro porti onal to Ù; £ ,
and Ù£ , as m enti oned in Sec. 2. The pro jecti on operato r P in thi s case (see (5))
cannot be general ly wri tten in such a sim ple form as (15) because each P (see
(33) in R ef. [12]) conta ins also magneti c intera cti ons. It pro duces in the to ta l

expression for H = P H (see (7)) sums of pro ducts of many m ul tipl e (m agneti c,
\ quasi-m agneti c" , etc. ) intera cti ons of enorm ously high com plexi ty.

W e have shown a new and stra ightf orw ard way how to derive the extended
Hubba rd Ham i lto nia n f or the sc latti ce in the stro ng correl ati ons l im it based on
the di mer decompositi on of the ori ginal latti ce into a set of intera cti ng dim ers us-
ing the exact soluti on of each di mer pro blem. The stro ng correl ati on l imit is ta ken
into account by the reducti on of the space of the di m er states to the subspace cor-
respondi ng to the occupi ed energy levels. The metho d can be, in pri nci ple, appl ied
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to another models to deri ve the resul ti ng Ha mi l toni an in the strong correla ti on
l im it. The onl y restri cti on for a f urther popul ari zati on of the metho d can be the
compl exity of labori ous calcul ati ons exp onenti al ly growi ng up in the case when
instead of di mers we wi l l use m ore com plex clusters (tri m ers, etc.).

R ef er en ces

[1] F. Gebhard, T he M ott Metal { I nsulator T ransi ti on, Spri n ger T r acts i n Mo dern
Ph ysi cs, V ol. 137, Springer, Berlin 1997.

[2] Yu. A . Izyumo v, Ph ys. U sp. 4 0, 445 (1997).

[3] P.W. A nderson, Ph ys. Rev. 115, 2 (1959).

[4] P.W. A nderson, Sci en ce 2 35, 1196 (1997).

[5] E. Dagotto, Rev. Mod . Ph ys. 66, 763 (1994).

[6] A .B. H arris, R.V . Lange, Ph ys. Rev. 15 7, 295 (1967).

[7] K .A . Chao, J . Spa¤ek, A .M. Oleƒ, L271 (1977) ;
747 (1977); 3453 (197 8).

[8] J. Spa¤ek, A .M. Oleƒ, 375 (1977).

[9] J. Spa¤ek, K .A . C hao, 5241 (1980).

[10] C. Gros, R. Joynt, T .M. Rice, 381 (1987).

[11] J. H ubbard, 238 (1963); 401 (1964).

[12] B. Grabiec, M. Matlak, (2002).


