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marta.walczynska@us.edu.pl

1 Institute of Mathematics, University of Silesia, Bankowa 14, 40-007 Katowice, Poland

2 Institute of Mathematics of the Czech Academy of Sciences, Žitná 25„ 115 67 Praha 1,
Czech Republic

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40879-017-0199-4&domain=pdf


688 W. Bielas et al.

1 Introduction

The center of distances seems to be an elementary and natural notion which, as far as
we know, has not been studied in the literature. It is an intuitive and natural concept
which allows us to prove a generalization of von Neumann’s theorem on permutations
of two sequences with the same set of cluster points in a compact metric space, see
Theorem 2.1. We have realized that the computation of centers of distances—even
for well-known metric spaces—is not an easy task because it requires skillful use of
fractions. We have only found a few algorithms which enable us to compute centers
of distances, see Proposition 3.2 and Lemma 5.1.

We present the use of this notion for impossibility proofs, i.e., to show that a given
set cannot be the set of subsums, for example see Corollary 5.5. We refer the readers
to the paper [14] by Nitecki, as it provides a good introduction to facts about the set of
subsums of a given sequence. It is also worth to look into the papers [1–3,8] as well
as others cited therein.

In several papers, the set of all subsums of the sequence 3
4 ,

1
2 ,

3
16 ,

1
8 , . . . ,

3
4n ,

2
4n , . . .,

i.e., the set X consisting of all sums

∑

n∈A

2

4n
+

∑

n∈B

3

4n
,

where A and B are arbitrary subsets of positive natural numbers, is considered. Guthrie
and Nymann, see [5] and cf. [15] and [14, p. 865], have shown that

[ 3
4 , 1

] ⊂ X. But,
as it can be seen in Corollary 4.2, we get that

[ 2
3 , 1

] ⊂ X. For these reasons, we
have an impression that the arithmetical properties of X are not known well and
described in the literature. Results concerning some properties of X are discussed in
Propositions 4.1, 4.3 and 4.4; Corollary 4.5; Theorems 5.2, 5.3, 5.4, 6.1 and 6.2; and
they are also presented in Figs. 1, 2 and 3.

2 A generalization of von Neumann’s theorem

Given a metric space X with the distance d. Suppose that sequences (xn)n∈ω and
(yn)n∈ω in X have the same set of cluster pointsC . For them, vonNeumann [13] proved
that there exists a permutation π : ω → ω such that limn→+∞ d(xn, yπ(n)) = 0.
Proofs of the above statement can be found in [6,18]. However, we would like to
present a slight generalization of this result. To prove it we use the so-called “back-
and-forth”method, whichwas developed in [7, pp. 35–36] and is still used successfully
bymanymathematicians, for example cf. [4,16] or [17], etc. It is alsoworthmentioning
the modern development of classical works of Fraïssé by Kubiś [11].

Consider the set

S(X) = {α : ∀x∈X ∃y∈X d(x, y) = α},

which will be called the center of distances of X .
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On the center of distances 689

Theorem 2.1 Suppose that sequences (an)n∈ω and (bn)n∈ω in X have the same set
of cluster points C ⊆ X, where (X, d) is a compact metric space. If α ∈ S(C), then
there exists a permutation π : ω → ω such that limn→+∞ d(an, bπ(n)) = α.

Proof Given α ∈ S(C), we shall renumber (bn)n∈ω by establishing a permutation
π : ω → ω such that

lim
n→+∞d(an, bπ(n)) = α.

Put π(0) = 0 and assume that values π(0), π(1), . . . , π(m − 1) and inverse values
π−1(0), π−1(1), . . . , π−1(m − 1) are already defined. We proceed step by step as
follows.

Ifπ(m) is not defined, then takepoints xm, ym ∈ C such thatd(am, xm) = d(am,C)

and d(xm, ym) = α. Choose bπ(m) to be the first element of (bn)n∈ω not already used
such that d(ym, bπ(m)) < 1

m .

If π−1(m) is not defined, then take points pm, qm ∈ C such that d(bm, qm) =
d(bm,C) and d(pm, qm) = α. Choose aπ−1(m) to be the first element of (an)n∈ω not
already used such that d(pm, aπ−1(m)) < 1

m .

The set C ⊆ X , as a closed subset of a compact metric space, is compact. Hence
the required points xm, ym, pm and qm always exist and also

lim
n→+∞d(an,C) = 0 = lim

n→+∞d(bn,C).

It follows that α = d(xm, ym) = d(pm, qm) = limn→+∞ d(an, bπ(n)). 	

Let us note that von Neumann’s theorem mentioned above is applicable for some
other problems, for example cf. [9] or [10], etc. As we have seen, the notion of a
center of distances appears in a natural way in the context of metric spaces. Though
the computation of centers of distances is not an easy task, it can be done for important
examples giving further information about these objects.

3 On the center of distances and the set of subsums

Given a metric space X , observe that 0 ∈ S(X) and also, if X ⊆ [0,+∞) and 0 ∈ X ,
then S(X) ⊆ X .

If (an)n∈ω is a sequence of reals, then the set

X =
{∑

n∈A

an : A ⊆ ω

}

is called the set of subsums of (an)n∈ω. In this case, we have d(x, y) = |x − y|. If
X is a subset of the reals, then any maximal interval (α, β) disjoint from X is called
an X -gap. Additionally, when X is a closed set, then any maximal interval [α, β]
included in X is called an X -interval.
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690 W. Bielas et al.

Proposition 3.1 If X is the set of subsums of a sequence (an)n∈ω, then an ∈ S(X),
for all n ∈ ω.

Proof Suppose x = ∑
n∈A an ∈ X. If n ∈ A, then x−an ∈ X and d(x, x −an) = an .

When n /∈ A, then x + an ∈ X and d(x, x + an) = an . 	

In some cases, the center of distances of the set of subsums of a given sequence can
be determined. For example, the unit interval is the set of subsums of the sequence( 1
2n

)
n>0. So, the center of distances of the subsums of

( 1
2n

)
n>0 is equal to

[
0, 1

2

]
.

Proposition 3.2 Assume that (λ ·[0, b)) ∩ X = λ ·X, for a number λ > 0 and a set
X ⊆ [0, b). If x ∈ [0, b)\X and n ∈ ω, then λnx /∈ X.

Proof Without loss of generality, assume that X ∩ (0, b) �= ∅. Thus λ � 1, since
otherwise we would get b < λmt ∈ X , for some t ∈ X and m ∈ ω. Obviously
x = λ0x ∈ [0, b)\X. Assume that λnx /∈ X , so we get

λ · [0, b)  λn+1x = λ ·λnx /∈ λ ·X = (λ · [0, b)) ∩ X.

Therefore λn+1x /∈ X , which completes the induction step. 	

Using Proposition 3.2 with λ = 1

qn and b = 1, one can prove the next theorem. In
fact, this proposition explains the hidden argument in the next proof.

Theorem 3.3 If q > 2 and a > 0, then the center of distances of the set of subsums of
a geometric sequence

( a
qn

)
n>0 consists of exactly zero and the terms of this sequence.

Proof By Proposition 3.1, we get a
qn ∈ S(X) for n > 0. Without loss of generality

we can assume a = 1. The diameter of the set X of subsums of the sequence
( 1
qn

)
n>0

equals 1
q−1 = ∑

i>0
1
qi

= X(0). Putting X(n) = ∑
i>n

1
qi
, since 1

q−1 < 1, we get

1

qn
>

∑

i>n

1

qi
= 1

qn
· 1

q − 1
= X(n) >

1

qn+1 .

So, 1
q ∈ X witnesses that no t > 1

q belongs to S(X). Indeed,

1

q
− t < 0 and

1

q
+ t >

2

q
>

1

q − 1
= X(0).

If t ∈ I , where I is an X -gap, then t /∈ S(X). Indeed, then t /∈ X and −t /∈ X ,
i.e., 0 ∈ X witnesses that t /∈ S(X). But the intervals

(
X(n), 1

qn
)
are X -gaps, hence

⋃
n>0

(
X(n), 1

qn
)
is disjoint from S(X).

Now, assume that n > 0 is fixed. Suppose that t ∈ ( 1
qn + 1 ,X(n)

]
and t+X(n+1) <

1
qn .ThusX(n+1) ∈ X witnesses that t /∈ S(X). Indeed,X(n+1) < 1

qn+1 < t implies

X(n+1) − t < 0, and X(n+1) + 1
qn+1 = X(n) implies that the X -gap

(
X(n), 1

qn
)

has to contain t + X(n+1).
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On the center of distances 691

If t ∈ ( 1
qn+1 ,X(n)

]
and 1

qn � t + X(n+1), then the interval
(
X(n) − t, 1

qn − t
)
is

included in the interval [0,X(n+1)]. No X -gap of the length

q − 2

qn(q − 1)
= 1

qn
− X(n)

is contained in the interval [0,X(n+1)]. Therefore, one can find

x ∈ X ∩
(
X(n) − t,

1

qn
− t

)
⊂ [0,X(n+1)],

which witnesses that t /∈ S(X). Indeed, we get x � X(n+1) < 1
qn+1 < t, hence

x − t < 0; and we have that x + t belongs to the X -gap
(
X(n), 1

qn
)
.

By Proposition 3.1, we get 1
qn ∈ S(X) for n > 0. 	


Note that, when we put a = 2 and q = 3, Theorem 3.3 applies to the Cantor ternary
set. For a ∈ {2, 3} and q = 4 this theorem applies to sets C1 and C2 which will be
defined in Sect. 4.

4 An example of a Cantorval

Following [5, p. 324], consider the set of subsums

X =
{∑

n>0

xn
4n

: ∀n xn ∈ {0, 2, 3, 5}
}
.

Thus, X = C1+C2, where C1 = {∑
n∈A

2
4n : 0 /∈ A ⊆ ω

}
and C2 = {∑

n∈B 3
4n : 0 /∈

B ⊆ ω
}
. Following [12, p. 330], because of its topological structure, one can call this

set a Cantorval (or an M-Cantorval).
Before discussing the affine properties of the Cantorval X we shall introduce the

following useful notions. Every point x in X is determined by a sequence (xn)n>0,
where x = ∑

n>0
xn
4n . The value xn is called the n-th digit of x and the sequence

(xn)n>0 is called a digital representation of the point x ∈ X. Keeping in mind the
formula for the sum of an infinite geometric series, we denote the tails of series as
follows:

C1(n) =
∑

k>n

2

4k
= 2

3
· 1

4n
and C1(0) = 2

3
;

C2(n) =
∑

k>n

3

4k
= 1

4n
and C2(0) = 1;

X(n) =
∑

k>n

5

4k
= 5

3
· 1

4n
and X(0) = 5

3
.
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692 W. Bielas et al.

Fig. 1 An approximation of the Cantorval X ⊂ [
0, 5

3
]

SinceX(0) = 5
3 we getX ⊂ [

0, 5
3

]
. The involution h : X → X defined by the formula

x �→ h(x) = 5

3
− x

is the symmetry of X with respect to the point 5
6 . In order to check this, it suffices to

note that

∑

n∈A

2

4n
+

∑

n∈B

3

4n
= x ∈ X �⇒ 5

3
− x =

∑

n /∈A
n>0

2

4n
+

∑

n /∈B
n>0

3

4n
∈ X;

and also that

1

2
+

∑

n>0

5

42n
= 3

4
+

∑

n>0

5

42n+1 = 5

6
∈ X.

So, we get X = 5
3 − X and X = h[X].

In Fig. 1, there are marked gaps
( 5
12 ,

1
2

)
and

( 7
6 ,

5
4

)
, both of the length 1

12 . Six gaps( 5
48 ,

1
8

)
,
( 7
24 ,

5
16

)
,
( 29
48 ,

5
8

)
,
( 25
24 ,

17
16

)
,
( 65
48 ,

11
8

)
and

( 37
24 ,

25
16

)
have the length 1

48 . The rest
of gaps are shorter and have lengths not greater than 1

192 . To describe intervals which
lie in X, we need the following. Let

Kn =
[
2

3
, 1

]
∩

{ n∑

i=1

xi
4i

: ∀i xi ∈ {0, 2, 3, 5}
}
.

We get K1 = { 3
4

}
and K2 = { 11

16 ,
3
4 ,

13
16 ,

7
8 ,

15
16

}
. Keeping in mind C1(0) = 2

3 and

C1(n) < 1
4n , we check that f n1 = 3

4n + ∑n−1
i=1

2
4i

> 2
3 is the smallest real number

in Kn . Similarly, using X(n) = 5
3 · 1

4n < 2
4n and C2(0) = 1, we check that f n|Kn | =

∑n
i=1

3
4i

< 1 is the greatest real number in Kn . In fact, we have the following.

Proposition 4.1 Reals from Kn are distributed consecutively at the distance
1
4n , from

3
4n + ∑n−1

i=1
2
4i

up to
∑n

i=1
3
4i
, in the interval

[ 2
3 , 1

]
. Therefore |Kn| = 1

3 (4n − 1) and
|Kn+1| = 4|Kn| + 1.
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On the center of distances 693

Proof Since |K1| = 1 and |K2| = 5, the assertions are correct in these cases. Suppose
that Kn−1 = { f n−1

1 , f n−1
2 , . . . , f n−1

|Kn−1|}, where

f n−1
1 = 3

4n−1 +
n−2∑

i=1

2

4i
and f n−1

j+1 − f n−1
j = 1

4n−1

for 0 < j < |Kn−1| − 1; in consequence f n−1
|Kn−1| = ∑n−1

i=1
3
4i

. Consider the sum

Kn−1 ∪
(

2

4n
+ Kn−1

)
∪

(
3

4n
+ Kn−1

)
∪

(
5

4n
+ Kn−1

)
,

next remove the point 5
4n + ∑n−1

i=1
3
4i

> 1, and then add points f n1 = 3
4n + ∑n−1

i=1
2
4i

and f n3 = 5
4n + ∑n−1

i=1
2
4i

. We obtain the set

Kn =
{
f n1 , f n2 , . . . , f n1

3 (4n−1)

}
,

which is what we need. 	


Corollary 4.2 The interval
[ 2
3 , 1

]
is included in the Cantorval X.

Proof The union
⋃{Kn : n > 0} is dense in the interval [ 23 , 1

]
. 	


Note that it has been observed that
[ 3
4 , 1

] ⊂ X, see [5] or cf. [14]. Since X is centrally
symmetric with 5

6 as a point of inversion, this yields another proof of the above
corollary. However, our proof seems to be new and it is different from the one included
in [5].

Put Cn = 1
4n ·X = X ∩ [

0, 5
3 ·4n

]
, for n ∈ ω. So, each Cn is an affine copy of X.

Proposition 4.3 The subset X\[ 23 , 1
] ⊂ X is the union of pairwise disjoint affine

copies of X. In particular, this union includes two isometric copies of Cn = 1
4n ·X, for

every n > 0.

Proof The desired affine copies of X are C1 and 5
4 + C1 = h[C1], 1

2 + C2 and
h
[ 1
2 +C2

]
, and so on, i.e.,

∑n
i=1

2
4n + Cn+1 and h

[∑n
i=1

2
4n + Cn+1

]
. 	


Proposition 4.4 The subset X\(( 23 , 1
) ∪ ( 1

6 ,
1
4

) ∪ ( 17
12 ,

3
2

)) ⊂ X is the union of six
pairwise disjoint affine copies of D = [

0, 1
6

] ∩ X.

Proof The desired affine copies of D = 1
4 ·(X ∩ [

0, 2
3

])
lie as shown in Fig. 2. 	
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694 W. Bielas et al.

Fig. 2 The arrangement of affine copies of D

Fig. 3 The correspondence between X-gaps and X-intervals

Corollary 4.5 The Cantorval X ⊂ [
0, 5

3

]
has Lebesgue measure 1.

Proof There exists a one-to-one correspondence between X-gaps and X-intervals as
it is shown in Fig. 3.

In view of Propositions 4.3 and 4.4, we calculate the sum of lengths of all gaps
which lie in

[
0, 5

3

]\X as follows:

1

6
+ 6 · 1

3 ·42 + 1

8
· 3
4

+ · · · + 1

8
·
(
3

4

)n
+ · · · = 1

6
+ 1

8

∑

n�0

(
3

4

)n
= 2

3
.

Since 5
3 − 2

3 = 1 we are done. 	

If we remove the longest interval from 1

4n ·D, then we get the union of three copies
of D, each congruent to 1

4n+1 ·D. This observation—we used it above by default—is
sufficient to calculate the sum of lengths of all X-intervals as follows:

1

3
+ 1

6
+ 6 · 1

3 ·42 + · · · + 1

8
·
(
3

4

)n
+ · · · = 1.

Therefore the boundary X\IntX is a null set.

5 Computing centers of distances

In case of subsets of the real line we formulate the following lemma.

Lemma 5.1 Given a set C ⊆ [0,+∞) disjoint from an interval (α, β), assume that
x ∈ [

0, α
2

] ∩ C. Then the center of distances S(C) is disjoint from the interval
(α − x, β − x), i.e., S(C) ∩ ((α, β) − x) = ∅.

Proof Given x ∈ [
0, α

2

] ∩ C , consider t ∈ (α − x, β − x). We get

x � α

2
� α − x < t < β − x .

Since α < x + t < β, we get x + t /∈ C , also x < t implies x − t /∈ C . Therefore
x ∈ C witnesses t /∈ S(C). 	
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On the center of distances 695

We will apply the above lemma by putting suitable C-gaps in the place of the interval
(α, β). In order to obtain t /∈ S(C), we must find x < t such that x + t ∈ (α, β) and
x ∈ C . For example, this is possible when α

2 < t < α and the interval [0, α] includes
no C-gap of the length greater than or equal to β − α. But if such a gap exists, then
we choose the required x more carefully.

Theorem 5.2 The center of distances of the CantorvalX is equal to
{
0, 3

4 ,
1
2 , . . . ,

3
4n ,

2
4n , . . .

}
.

Proof The diameter of X is 5
3 and 5

6 ∈ X, hence no t > 5
6 belongs to S(X). We

use Lemma 5.1 with respect to the gap (α, β) = ( 7
6 ,

5
4

)
. Keeping in mind the affine

description of X, we see that the set X∩ [
0, 7

12

]
has a gap

( 5
12 ,

1
2

)
of the length 1

12 . For
t ∈ ( 7

12 ,
7
6

)\{ 3
4

}
, we choose x inX such that x ∈ ( 7

6 −t, 5
4 −t

)
. So, if t ∈ ( 7

12 ,
7
6

)\{ 3
4

}
,

then t /∈ S(X). Similarly using Lemma 5.1 with the gap (α, β) = ( 29
48 ,

5
8

)
, we check

that for t ∈ ( 29
96 ,

7
12

]\{ 1
2

}
there exists x in X such that x ∈ ( 29

48 − t, 5
8 − t

)
. Hence,

if t ∈ ( 29
96 ,

7
12

]\{ 1
2

}
, then t /∈ S(X). Analogously, using Lemma 5.1 with the gap

(α, β) = ( 5
12 ,

1
2

)
, we check that if 5

24 < t � 29
96 < 5

12 , then t /∈ S(X).
For the remaining part of the interval [0,+∞) the proof uses the similarity of X

with 1
4n ·X for n > 0. Indeed, we have shown that the X-gaps

( 7
6 ,

5
4

)
,
( 29
48 ,

5
8

)
and( 5

12 ,
1
2

)
witness that S(X) ∩ ( 5

24 ,
7
6

) = { 1
2 ,

3
4

}
. For n > 0, by the similarity, the

X-gaps 1
4n ·( 76 , 5

4

)
, 1
4n ·( 2948 , 5

8

)
and 1

4n ·( 5
12 ,

1
2

)
witness that S(X) ∩ ( 5

6 ·4n+1 ,
7

6 ·4n
) ={ 2

4n+1 ,
3

4n+1

}
.

We have
{ 2
4n : n > 0

} ∪ { 3
4n : n > 0

} ⊆ S(X) by Proposition 3.1. 	

Denote Z = [

0, 5
3

]\IntX. Thus the closure of an X-gap is a Z-interval and the interior
of an X-interval is a Z-gap.

Theorem 5.3 The center of distances of the set Z is trivial, i.e., S(Z) = {0}.
Proof If α > 1, then {1 + α, 1 − α} ∩ Z = ∅, hence 1 ∈ Z implies α /∈ S(Z). If
α ∈ { 1

4 , 1
}
, then 11

24 ∈ ( 5
12 ,

1
2

) ⊂ Z implies α /∈ S(Z). Indeed, the number 1 + 11
24

belongs to the Z-gap
( 17
12 ,

3
2

)
and the number 1

4 + 11
24 belongs to the Z-gap

( 2
3 , 1

)
and

the number 11
24− 1

4 belongs to theZ-gap
( 1
6 ,

1
4

)
.Also 0 ∈ Z implies

( 2
3 , 1

)∩S(Z) = ∅,

since
( 2
3 , 1

)
is aZ-gap. For the same reason 1

4 ∈ Z implies 2
3 /∈ S(Z) and 1

3 ∈ Z implies
that no α ∈ ( 1

3 ,
2
3

)
belongs to S(Z). Since 1

6 < 17
32 − 1

3 < 1
4 and

2
3 < 17

32 + 1
3 < 1, then

17
32 ∈ Z implies 1

3 /∈ S(Z). But, if α ∈ ( 1
4 ,

1
3

)
, then 1

2 ∈ Z implies α /∈ S(Z). Indeed,
1
6 < 1

2 − α < 1
4 and 3

4 < 1
2 + α < 5

6 . So far, we have shown S(Z) ∩ [ 1
4 ,+∞) = ∅.

In fact, sets
[ 1
4n+1 ,

1
4n

]
and S(Z) are always disjoint, since

1

4n
·(Z ∩ [0, 1]) =

[
0,

1

4n

]
∩ Z.

Therefore α ∈ [ 1
4n+1 ,

1
4n

] ∩ S(Z) implies 4n ·α ∈ [ 1
4 , 1

] ∩ S(Z), a contradiction.
Finally, we get S(Z) = {0}. 	
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Now, denoteY = Z∩X = X\IntX. Thus, eachX-gap is also aY-gap, and the interior
of an X-interval is a Y-gap.

Theorem 5.4 S(Y) = {0} ∪ { 1
4n : n ∈ ω

}
.

Proof Since the numbers 0, 1
4 ,

1
2 ,

17
32 , 1 and 1

3 = ∑
n>0

5
42n

are in Y, we get

⋃{(
1

4n+1 ,
1

4n

)
: n ∈ ω

}
∩ S(Y) = ∅,

as in the proof of Theorem 5.3. We see that 1 ∈ S(Y), because

Y ∩
[
0,

2

3

]
+ 1 = Y ∩

[
1,

5

3

]
.

Moreover
(

Y ∩
[
0,

1

6

]
+ 1

4

)
∪

(
Y ∩

[
0,

1

6

]
+ 1

2

)
⊂ Y,

so 1
4 ∈ S(Y). Similarly, we check that 1

4n ∈ S(Y). 	

Corollary 5.5 Neither Z nor Y is the set of subsums of a sequence.

Proof Since S(Z) = {0}, Proposition 3.1 decides the case of Z. Also, this proposition
decides the cases of Y, since 5

3 ∈ Y and
∑

n∈ω
1
4n = 4

3 . 	

Let us add that the set of subsums of the sequence

( 1
4n

)
n∈ω

is included in Y. One can

check this, observing that each number
∑

n∈A
1
4n , where the nonempty set A ⊂ ω is

finite, is the right end of an X-interval.

6 Digital representation of points in the Cantorval X

Assume that A = (an)n>0 and B = (bn)n>0 are digital representations of a point
x ∈ X, i.e.,

∑

n>0

an
4n

=
∑

n>0

bn
4n

= x,

where an, bn ∈ {0, 2, 3, 5}. We are going to describe dependencies between an and
bn . Suppose n0 is the least index such that an0 �= bn0 . Without loss of generality, we
can assume that an0 = 2 < bn0 = 3, bearing in mind that X(n0) = 5

3 · 1
4n0 . And then

we say that A is chasing B (or B is being caught by A) in the n0-step: in other words,∑
i>n0

ai
4i

= ∑
i>n0

bi
4i

+ 1
4n0 and ak = bk for k < n0. If it is never the case that ak = 5

and bk = 0, then it has to be bk + 3 = ak for all k > n0. In such a case, we obtain∑
i>n0

ai
4i

= ∑
i>n0

bi
4i

+ 1
4n0 , since

∑
i>n0

3
4i

= 1
4n0 .
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Suppose n1 is the least index such that an1 = 5 and bn1 = 0, thus B is chasing A in
the n1-step. Proceeding this way, we obtain an increasing (finite or infinite) sequence
n0 < n1 < · · · such that |ank− bnk | = 5 and |ai − bi | = 3 for n0 < i /∈ {n1, n2, . . .}.
Moreover, A starts chasing B in the nk-step for even k’s and B starts chasing A in the
nk-step for odd k’s, for the rest of steps changes of chasing do not occur.

Theorem 6.1 Assume that x ∈ X has more than one digital representation. There
exist a finite or infinite sequence of positive natural numbers n0 < n1 < · · · and
exactly two digital representations (an)n>0 and (bn)n>0 of x such that:

• ak = bk, whenever 0 < k < n0;
• an0 = 2 and bn0 = 3;
• ank = 5 and bnk = 0, for odd k;
• ank = 0 and bnk = 5, for even k > 0;
• ai ∈ {3, 5} and ai − bi = 3, whenever n2k < i < n2k+1;
• ai ∈ {0, 2} and bi − ai = 3, whenever n2k+1 < i < n2k+2.

Proof According to the chasing algorithm described above in the step nk the roles of
chasing are reversed. But, if the chasing algorithm does not start, then the considered
point has a unique digital representation. 	

The above theoremmakes it easy to check the uniqueness of digital representation. For
example, if x ∈ X has a digital representation (xn)n>0 such that xn = 2 and xn+1 = 3
for infinitely many n, then this representation is unique. Indeed, suppose A = (an)n>0
and B = (bn)n>0 are two different digital representations of a point x ∈ X such that
ak = bk , whenever 0 < k < n0 and an0 = 2 < bn0 = 3. By Theorem 6.1, the digit 3
never occurs immediately after the digit 2 in digital representations of x for the digits
greater than n0, since it has to be |ak − bk | > 2 for k > n0.

The map (an)n>0 �→ ∑
n>0

an
4n is a continuous function from the Cantor set (a

homeomorphic copy of the Cantor ternary set) onto the Cantorval such that the preim-
age of a point has at most two points. In fact, the collection of points with two-point
preimages and its complement are both of the cardinality continuum. By the algo-
rithm described above, each sequence n0 < n1 < · · · of positive natural numbers
determines exactly two sequences (an)n>0 and (bn)n>0 such that

∑

n>0

an
4n

=
∑

n>0

bn
4n

,

and vice versa. In the following theorem, we will use the abbreviation B = { 2
4n : n >

0
} ∪ { 3

4n : n > 0
}
.

Theorem 6.2 Let A ⊂ B be such that B\A and A are infinite. Then the set of subsums
of a sequence consisting of different elements of A is homeomorphic to the Cantor set.

Proof Fix anonemptyopen interval I.Assume that (an)n>0 is the digital representation
of a point

∑
n>0

an
4n ∈ I. Choose natural numbers m > k such that numbers

∑k
n=1

an
4n

and 5
4m +∑k

n=1
an
4n belong to I. Then choose j > m such that a

4 j ∈ B\A, where a = 2
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or a = 3. Finally put bn = an , for 0 < n � k; bj = 5; bj+1 = 2 and bi = 0 for
other cases. Since bm = 0, we get

∑
i>0

bi
4i

∈ I. Theorem 6.1 together with conditions

bj = 5 and bj+1 = 2 imply that the point
∑

i>0
bi
4i

is not in the set of subsums of A.
Thus, this set being dense in itself and closed is homeomorphic to the Cantor set. 	
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