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zaneta.muchewicz@gmail.com (Ż.L.); aradtke@umk.pl (A.R.)
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Abstract: Bioactivity investigations of titania nanotube (TNT) coatings enriched with silver nanograins
(TNT/Ag) have been carried out. TNT/Ag nanocomposite materials were produced by combining
the electrochemical anodization and chemical vapor deposition methods. Fabricated coatings were
characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS),
and Raman spectroscopy. The release effect of silver ions from TNT/Ag composites immersed in bodily
fluids, has been studied using inductively coupled plasma mass spectrometry (ICP-MS). The metabolic
activity assay (MTT) was applied to determine the L929 murine fibroblasts adhesion and proliferation
on the surface of TNT/Ag coatings. Moreover, the results of immunoassays (using peripheral blood
mononuclear cells—PBMCs isolated from rats) allowed the estimation of the immunological activity
of TNT/Ag surface materials. Antibacterial activity of TNT/Ag coatings with different morphological
and structural features was estimated against two Staphylococcus aureus strains (ATCC 29213 and
H9). The TNT/Ag nanocomposite layers produced revealed a good biocompatibility promoting the
fibroblast adhesion and proliferation. A desirable anti-biofilm activity against the S. aureus reference
strain was mainly noticed for these TiO2 nanotube coatings, which contain dispersed Ag nanograins
deposited on their surface.

Keywords: titania nanotube coatings; silver nanograins; surface morphology; biointegration properties;
immunological activity

1. Introduction

The low toxicity of titanium and its alloys, as well as their mechanical properties and corrosion
resistance, has meant that these materials are widely used in the production of implants for dentistry,
maxillofacial surgery, orthopedics, and so on [1,2]. The quality of implants significantly depends on
their surface properties and influences their tissue integration properties and osseointegration [3].
An analysis of previous reports revealed that the increased surface roughness of implants, and thereby
an increased area, led to improved cell migration and attachment to the implant, as well as to an
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enhanced osseointegration process [4,5]. Therefore, the surface treatment of implants (i.e., mechanical,
physical, and chemical) is used to increase cell adhesion and proliferation, to accelerate the
biointegration processes, and to improve surface wettability [6–9]. Earlier works revealed that the
fabrication of the titania nanotubes coating (TNT) on the surface of the titanium substrate significantly
increased implant biointegration [1,10,11]. Moreover, a noticeable influence of nanotube diameter
and its crystallinity on the adhesion and proliferation of fibroblasts on the surface of TNT layers
was observed [10]. A significant issue, which should be solved during the construction of modern
implants, is the necessity to provide anti-infection activity. This is especially important in the use of
Ti/Ti alloy implants in the oral and craniofacial environment. These properties of implants can be
achieved by the addition of biostatic/biocidal components. Antibiotics may be used for this purpose.
However, problems associated with the antibiotic resistance of bacteria and their short-term effect
mean that their effectiveness may be weak [12]. Another way is to enrich TiO2-based layers with
silver nanoparticles [13–15]. Silver reveals strong antibacterial and antifungal properties through the
interaction with bacterial and fungal proteins and enzymes, as well as causing the structural damage
of the bacterial and fungal cell wall and membrane [13,16–18]. Therefore, silver exhibits great potential
for being applied in the fabrication of metal implant coatings in order to prevent biomaterial-related
infections. Earlier reports revealed that magnetron sputtering, physical vapor deposition (PVD), sol-gel,
and chemical reduction were usually applied to the production of silver-incorporated TNT (TNT/Ag)
nanocomposites [16–20]. The results of these investigations proved that suitable antibacterial activity
was observed for the dispersed Ag grains of a diameter below 40 nm [14,21–24]. The application of
chemical vapor deposition (CVD) to enrich TNT coatings with dispersed silver nanograins is rather
rare, despite the fact that this method provides a controlled growth of silver grains and adequate
dispersion on the substrate surface (both flat as well as 3D substrates) [14,25]. It may be necessary
to solve the problems associated with the precursor choice and the optimization of CVD conditions,
which will allow the deposition of Ag grains on the surface of TNT coatings, without changes to their
structure and morphology. Moreover, the fabricated TNT/Ag composite coatings should possess
optimal biointegration properties and should simultaneously exhibit suitable antibacterial activity.

The results of our works on the use of the CVD method to incorporate silver grains into titania
nanotube coatings (TNT) are discussed in the presented paper. We have focused on the optimization of
the CVD process in order to deposit dispersed Ag grains on the surface of TNT substrates, and on the
estimation of antibacterial properties and biointegration activity of the produced coatings. The obtained
results should be helpful in the design and in the construction of implants, which will be characterized
both by suitable biointegration properties and also by anti-inflammation activity.

2. Results

2.1. Fabrication and Characterization of TNT/Ag Nanocomposite Coatings

The studied titania/silver nanocomposite coatings were obtained using a two-stage procedure.
The first step was connected with titania nanotube production and the second one with the enrichment
of nanotubes with silver nanograins. The titania nanotube (TNT) layers have been produced by the
electrochemical anodization of the titanium foil at selected potentials, i.e., 4 V (TNT4), 6 V (TNT6),
and 18 V (TNT18). X-ray diffraction (XRD) and Raman spectroscopy studies confirmed that the TNT4,
TNT6, and TNT18 samples were amorphous. The thermal stability of the produced coatings has been
determined by an analysis of Raman spectra and SEM images of samples heated between 303 and
573 K. The obtained results revealed that the structure of TNT4 and TNT6 did not change, whereas
the TNT layers produced at 18 V (TNT18) exhibited an anatase structure (Figure S1). Simultaneously,
the tubular architecture of heated samples was unchanged at this temperature range. In the next
stage, the TNT4, TNT6, and TNT18 coatings were enriched with the Ag nanograins using the CVD
method. In all deposition experiments, Ag(OOCC2F5) has been applied as a metallic silver precursor.
The deposition conditions are presented in detail in the Materials and Methods section of this article.
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An analysis of XRD patterns confirmed the presence of Ag grains on the surface of Ti (reference sample)
and TNT substrates (Figure S1). The results of CVD experiments revealed that the formation of uniform
films, composed of dispersed silver grains, only occurred for the use of the precursor weight m = 5 and
10 mg. Mass differences before and after the CVD process of TNT/Ag samples suggest the formation of
coatings containing ca. 1 wt% and 1.5 wt% of silver grains. The analysis of XPS data (Table 1, Figure S2)
shows peaks at binding energy regions 458.9–459.5 eV and 464.7–465.3 eV, which can be attributed to
Ti(2p3/2) and Ti(2p1/2) core levels of Ti4+ [26]. The composite O(1s) peaks are distributed into three
peaks at 530.3–530.5, 531.7–532.0, and 532.7–533.0 eV, assigned to O2− in the Ti–O bond, surface –OH
groups (these groups change into ·OH free radicals in the photogeneration of electron-hole pairs), and
surface H2O molecules, respectively (Table 1 and Figure S2) [27]. The H2O/TiO2 molar ratio (calculated
as the area ratio of peaks assigned to H2O and O2−) is 0.2, 0.1, and 0.6 for TNT4/Ag, TNT6/Ag,
and TNT18/Ag, respectively. Peaks at 368.0–368.8 eV (Ag 3d5/2) and 373.9–374.9 eV (Ag 3d3/2),
with the splitting of the 3d doublet of 5.9–6.1 eV, indicate the formation of silver clusters [28,29].

Table 1. X-ray photoelectron spectroscopy peak positions for TNT/Ag coatings (TiO2 nanotubes were
produced at 4 V (TNT4), 6 V (TNT6), and 18 V (TNT18)) on the surface of titanium foil (99.6% Ti,
0.20 mm thick, STREM).

Sample
Ti4+ O2− OH− H2O Ag

Ti (2p3/2)
(eV)

Ti (2p1/2)
(eV)

O (1s)
(eV)

O (1s)
(eV)

O (1s)
(eV)

Ag (3d5/2)
(eV)

Ag (3d5/2)
(eV)

TNT4/Ag 458.9 464.7 530.5 (58%) 532.0 (29%) 533.2 (13%) 368.5 374.5
TNT6/Ag 459.3 465.1 530.1 (71%) 531.8 (22%) 533.0 (7%) 368.8 374.9
TNT18/Ag 459.5 465.3 530.3 (54%) 531.7 (13%) 532.7 (33%) 368.0 373.9

An analysis of SEM images showed that uniform Ag films, formed on the surface of Ti substrates,
are composed of dispersed grains of diameters dAg = 35–40 nm (Figure 1a, Table 2). The dispersed
Ag grains of dAg = 45–65 nm were also deposited on the surface TNT4 layers (Figure 1b, Table 2).
The increase in the diameter of the TiO2 nanotubes caused the Ag grains (dAg = 30–45 nm) to be
mainly placed inside them (Figure 1c, Table 2). On the surface of TNT18/Ag, highly dispersed silver
nanograins of diameters dAg ≥ 15 nm were located on the surface and inside the nanotubes (Figure 1d,
Table 2), which is in agreement with reports in previously published literature [11,17,26]. The change
in the precursor weight influences the density of Ag grains dispersed on the TNT substrates, but not
their size and location.
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Figure 1. Scanning electron microscopy images of silver nanograins deposited on the surface of Ti (a);
TNT4 (b); TNT6 (c); and TNT18 (d), samples, respectively (CVD, precursor: Ag(OOCC2F5), deposition
temperature (TD) = 280 ◦C, reactor pressure (p) = 3 mbar, deposition time (t) = 30 min., mass of the
precursor (m) = 5 mg, substrate: Titanium foil (99.6% Ti, 0.20 mm thick, STREM)).
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Table 2. Diameters of titania nanotubes and average diameters of silver nanoparticles, which were
found on the surfaces of TNT/1 wt% Ag and TNT/1.5 wt% Ag nanocomposite coatings.

Sample dTNT (nm) dAg (nm)

Ti/Ag - 35–40
TNT4/Ag 20–30 45–65
TNT6/Ag 35–45 30–45
TNT18/Ag 100–150 ≥15

The release effects of silver ions from the TNT/Ag samples immersed in phosphate-buffered
saline (PBS) solutions have been estimated using inductively coupled plasma mass spectrometry
(ICP-MS). The obtained results are presented in Figure 2, as a function of immersion time.
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Figure 2. Silver ions release from TNT/Ag coatings containing 1 wt% Ag (a) and 1.5 wt% Ag;
(b) immersed in phosphate-buffered saline (PBS) solutions. Asterisk indicates significant differences
between tested and control surfaces (* p ≤ 0.05)

After the first week, the concentration of the released Ag+ in PBS solutions was 5–8 µg/L, similar
to all studied TNT/Ag nanocomposite samples. After three and four weeks, the concentration of the
Ag+ released in PBS solutions changed, depending on the type of TNT/Ag nanocomposite coatings.
For TNT4/Ag, it increased up to ca. 16–18 µg/L and 20–22 µg/L, respectively, which is higher than for
the Ti/Ag reference sample (Figure 2). In the case of TNT6/Ag and TNT18/Ag coatings, for which Ag
grains are mainly incorporated inside of the nanotubes, the silver ions release processes are impaired.
After three weeks, a decrease in the Ag+ concentration in the PBS solution below 5 µg/L was noticed.
A rapid increase in the release of silver ions for the above mentioned TNT/Ag layers was noticed after
four weeks (Figure 2).

2.2. Antibacterial Activity of TNT/Ag Coatings

The results of antibacterial activity (considered as the inhibition of biofilm formation) studies of
TNT/Ag coatings against Staphylococcus aureus bacteria (ATCC 29213 and H9 [22,30]), determinated
using Live/Dead and Alamar Blue methods, are presented in Figure 3. An analysis of these data
revealed that a clear inhibitory effect was observed for the Ti/Ag and TNT4/Ag systems against
the S. aureus reference strain, reaching an average of 22.9–31.1% and 26.5–64.5% of the inhibition of
biofilm formation, respectively. The increase in the nanotube diameter (TNT6/Ag) contributes to
Ag grain localization inside of the nanotubes, influencing the reduction of the antibacterial activity
of this coating (Figure 3). Moreover, TNT6/Ag nanocomposite layers loaded with 1 wt% of silver
grains revealed a significantly stronger inhibitory effect against the S. aureus ATCC 29213 biofilm
(34.5% (* p = 0.0157) and 48.6% (* p = 0.0008), tested by Alamar Blue and Live/Dead, respectively) in
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comparison to layers containing 1.5 wt% Ag (8.5% and 5.9%, tested by Alamar Blue and Live/Dead,
respectively). Inhibitory effects against reference staphylococci were also observed for TNT18/Ag
coatings, achieving about 25% in both methods used (the differences significant only for 1.5 wt% Ag
tested by Alamar Blue staining, * p = 0.0008); however, in this case, the anti-biofilm properties of this
layer did not depend on the content of silver grains. Interestingly, neither the presence of silver grains
nor nanotubes was affected biofilm formation by the S. aureus H9 clinical strain.
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Figure 3. Staphylococcus aureus aggregates/biofilm formation on the surfaces of Ti/Ag and TNT/Ag
coatings studied by (a) Alamar Blue staining and (b) Live/Dead BacLight Bacterial Viability kit.
The results are presented as the mean percentage of metabolically active/live bacteria reclaimed
after 24 h from Ti/Ag and TNT/Ag surfaces, compared to bacteria reclaimed from the conventional
(unmodified) Ti surface (control considered as 100%). Asterisk indicates significant differences between
tested and control surfaces (* p ≤ 0.05).

2.3. Fibroblasts Cells Adhesion and Proliferation

The influence of the structural and morphological changes of the TNT/Ag nanocomposite coatings
on the L929 murine fibroblasts adhesion (after 24 h), in comparison to proliferation (after 72 h) was
estimated based on the results of the MTT assay (Figure 4a,b). Figure 4a shows that in the case of
Ti/Ag composites, an increase in cell adhesion with a higher concentration of silver nanoparticles was
observed (ca. 1 wt% vs. 1.5 wt%; * p < 0.05). However, for TNT coatings, consisting of TiO2 nanotubes
with a diameter of ~100 nm (TNT18/Ag, amorphous/anatase system), the lower concentration of
silver nanoparticles induced a greater cell adhesion (* p < 0.05 for ca. 1 wt% Ag vs. 1.5 wt% Ag).
For TNT4/Ag nanolayers (amorphous, dTNT = 20–30 nm), both concentrations of silver nanoparticles
(ca. 1 wt% Ag and 1.5 wt% Ag) had a similar impact on the cell adhesion, which was higher in
comparison to TNT layers without Ag (* p < 0.05). The layers composed of nanotubes with a diameter
of 30 nm (TNT6/Ag) showed no differences in the absorbance between nanocomposites containing ~1
wt% and ~1.5 wt% of silver grains. As can be seen in Figure 4b, the coatings of TNT/Ag and Ti/Ag
composites generally induced a greater proliferation of L929 fibroblasts in comparison to the samples
not coated with silver. Furthermore, as in the case of cell adhesion, we noticed that for the nanotubes
with the largest diameter (TNT 18; dTNT = 100–150 nm), a higher concentration of silver nanoparticles
(ca. 1.5 wt% Ag) caused a lower cell proliferation (* p < 0.05). On the other hand, in the nanotubes with
the smallest diameter (TNT4; dTNT = 20–30 nm), the higher concentration of silver nanoparticles (ca.
1.5 wt% Ag) resulted in a greater proliferation of fibroblasts compared to the TNT4/Ag (ca. 1 wt% Ag)
(* p < 0.01).
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2.4. Morphology of Adherent Fibroblasts

Analyzing the SEM images, we noticed that the fibroblasts cultivated on the pure and enriched
with silver nanoparticles TNT surface coating effectively attach to the plate’s surface (Figure 5).
The number of cells cultured for 72 h and attached to the surface of the plate is significantly higher in
comparison to the same specimens incubated with cells for 24 h. Moreover, the fibroblasts incubated
on plates for 72 h were crowded and formed networks due to the overgrowth of cells, which indicates
that the tested plates could contribute to the proliferation of the cells. Our results also showed that the
fibroblasts cultivated on the nanotubes started to form filopodia which attached the cells to the plate’s
surface, and which spread between fibroblasts (Figure 5a–c).
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The cellular activation was evaluated through the presence of tumor necrosis factor

Nanomaterials 2017, 7, 274  7 of 19 

 

 
Figure 5. Results of SEM studies of the L929 murine fibroblasts adhesion (24 h) and proliferation  
(72 h) on the titanium substrate (Ti); titanium substrate deposited by silver nanoparticles (Ti/1wt% 
Ag); and TNT4, TNT6, and TNT18 coatings loaded or not loaded with silver nanoparticles (TNT/Ag, 
TNT, respectively). The arrows in Figure 5a–c indicate the filopodia spread between fibroblast (b) and 
the filopodia which attached the cells to the TNT4/1wt% Ag coating’s surface (a,c). 

2.5. Effect of TNT on the Synthesis of PGE2 and TNF-α by PBMCs 

The cellular activation was evaluated through the presence of tumor necrosis factor ᾳ (TNF-α) 
and prostaglandin E2 (PGE2), which influence the effect of specific functions within the inflammatory 
or wound healing processes. The immunological tests were done using PBMCs isolated from rats. 
Since we have observed that nanotubes with smaller diameters (TNT4, dTNT = 20–30 nm and TNT6 
dTNT = 30–45 nm), and among them those with a higher concentration of silver nanoparticles (ca. 
1.5wt% Ag), generally caused greater L929 cell proliferation, we decided to investigate their effect on 
the PGE2 and TNF-α release from PBMCs. The results indicate that both PGE2 and TNF-α levels in 
culture medium increased with time for all of the tested substrates, except for the PGE2 analysis for 
TNT6/Ag plates (ca. 1.5wt% Ag) (Figure 6a,b). 

(TNF-α)
and prostaglandin E2 (PGE2), which influence the effect of specific functions within the inflammatory
or wound healing processes. The immunological tests were done using PBMCs isolated from rats.
Since we have observed that nanotubes with smaller diameters (TNT4, dTNT = 20–30 nm and TNT6
dTNT = 30–45 nm), and among them those with a higher concentration of silver nanoparticles (ca. 1.5
wt% Ag), generally caused greater L929 cell proliferation, we decided to investigate their effect on the
PGE2 and TNF-α release from PBMCs. The results indicate that both PGE2 and TNF-α levels in culture
medium increased with time for all of the tested substrates, except for the PGE2 analysis for TNT6/Ag
plates (ca. 1.5 wt% Ag) (Figure 6a,b).
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Figure 6. The concentration of prostaglandin E2 (PGE2; a) or tumor necrosis factor α (TNF-α; b),
in the final supernatants harvested after the incubation of peripheral blood mononuclear cells (PBMCs)
with the TNT/Ag coatings, detected by the ELISA assay. Levels of PGE2 and TNF-α were assessed
for PBMCs incubated for 4 h and 24 h with titanium substrate (Ti), titanium substrate enriched with
silver nanoparticles (Ti/1.5 wt% Ag), TNT4, and TNT6 coatings loaded or not loaded with silver
nanoparticles (TNT/1.5 wt% Ag or TNT, respectively). PBMCs stimulated with LPS (1 µg/mL) for
4 h were used as a positive control for assessing the PGE2 and TNF-α release capacity of cells. Data
are shown as means ± standard error mean (S.E.M.) of three independent experiments with two wells
each. Asterisk indicates significant differences between the fibroblasts incubated with the respective
biomaterial samples for 4 h (white column) in comparison to the 24-h incubation time (black column; *
p < 0.05, ** p < 0.01, *** p < 0.001). Hash mark denotes significant differences between the cells incubated
with titanium substrate (Ti) for 4 h or 24 h compared to the cells incubated with TNT, TNT/Ag, or
Ti/Ag for the same period (# p < 0.05, ## p < 0.01, ### p < 0.001); n. d. — not detected.

The concentration of both PGE2 and TNF-α in all tested supernatants was lower in comparison to
the one determined in the supernatants aspirated after the stimulation of cells with lipopolisaccharide
(LPS) (352 ± 94 pg/mL for PGE2 and 1066 ± 21 pg/mL for TNF-α; * p < 0.001). LPS-stimulated PBMCs
(1 µg/mL for 4 h) were used as a positive control for assessing the cytokine and prostaglandin release
capacity of cells. As can be seen in Figure 6a, after a 4-h incubation of cells with substrates, the greatest
PGE2 level was noticed in the case of TNT6 (121 ± 22 pg/mL) and TNT6/1.5 wt% Ag (111 ± 25 pg/mL)
specimens. These values were higher compared to the one observed for the cells incubated with pure
titanium plates (Ti; 30 ± 8 pg/mL; * p < 0.01). On the other hand, the lowest concentration was observed
in the supernatants harvested after the incubation of PBMCs with TNT4/1.5 wt% Ag (not detected; * p
< 0.05). In the case of a 24-h incubation time, the PGE2 level was only higher when the PBMCs were
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incubated with TNT6 (204 ± 3 pg/mL; * p < 0.001) and TNT6/1.5 wt% Ag (130 ± 24 pg/mL; * p < 0.05)
in comparison to the one observed for the cells incubated with pure titanium plates (95 ± 9 pg/mL).

In contrast to the PGE2 results, TNF-α concentration analysis after 4-h incubation revealed
the highest level of cytokine during the incubation of cells with nanotubes of a smaller diameter:
TNT4 (120 ± 17 pg/mL; ** p < 0.01) and TNT4/1.5 wt% Ag (91 ± 9 pg/mL; * p < 0.05) compared to Ti
substrates (70 ± 6 pg/mL), whereas incubation with TNT6 (not detected; p < 0.01) and TNT6/1.5 wt%
Ag (46 ± 11 pg/mL; * p < 0.05) decreased the secretion of cytokine (Figure 6b). Surprisingly, a longer
incubation time resulted in higher TNF-α production, not only in the case of TNT4 (231 ± 12 pg/mL;
** p < 0.01) and TNT4/1.5 wt% Ag (210 ± 31 pg/mL; * p < 0.05), but also when PBMCs were incubated
with TNT6 (244 TNT4 ± 34 pg/mL; ** p < 0.01) when comparing these results with the cells incubated
with pure titanium specimens (134 ± 13 pg/mL).

3. Discussion

According to our earlier works, the anodization process of the titanium substrate surface at
different voltages leads to the formation of TNT layers with different nanotube diameters, structures,
and packing densities [10,31]. The formation of the nanotubular architecture was observed both
on the flat substrates, as well as on the surface of 3D implants. The layers produced at potentials
4 V (TNT4), 6 V (TNT6), and 18 V (TNT18) have been selected for our works on the formation of
TNT/Ag nanocomposites. With this choice, the possible correlations between the TNT coatings
structure and their bioactivity have been considered [10]. The use of the CVD method, in order to
enrich TNT coatings with the dispersed silver grains, required solving the following problems: (a) the
assessment of structural and morphological stability of TNT coatings during their heating up to 573 K;
and (b) the choice of CVD precursor for the deposition of dispersed Ag grains below 573 K. Earlier
works revealed that the amorphous TNT layers heated up to 1073 K were still amorphous below
553 K [22,30]. The results of our experiments proved that the morphology and amorphousness of TNT4
and TNT6 samples did not change during their heating up to 613 K, while beyond this temperature,
the tubular architecture of TNT layers was destroyed (Figure 7). An analysis of the Raman spectra of
the TNT18 sample, heated up to 573 K, revealed the formation of the layer, composed of TiO2 anatase
nanotubes (Figure S3).
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Among the CVD silver precursors that we studied, the properties of silver(I) pentafluoropropionate
(Ag(OOCC2F5)) appear to be suitable for use in the preparation of TNT/Ag nanocomposites [32–35].
A simple and inexpensive synthesis, and good volatility, thermal stability of vapors, and deposition
of pure and dispersed silver grains below 573 K were the main factors leading to the choice of this
compound. The results of XRD and XPS studies confirm the presence of metallic Ag grains on the
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surface of TNT films. An analysis of SEM images showed that the size and the position of Ag grains
changed with the increase in the titania nanotube diameter (Figure 1). On the surface of TNT4 layers
(dTNT = 20–30 nm), silver grains of dAg = 45–65 nm have been primarily deposited on the TNT matrix
surface. The increase in the TiO2 nanotube diameter up to dTNT = 30–45 nm (TNT6/Ag) caused Ag
grains of dAg = 35–45 nm to be mainly placed inside the nanotubes. On the surface of large TiO2

nanotubes (dTNT = 100–150 nm, TNT18/Ag), silver nanograins of dAg > 15 nm were located on the top
edges and walls of tubes.

According to the data presented in Figure 2, the amount of released silver ions after the first
week (5–10 µg/L) was lower than for other reported nanocomposite materials [22,27,28], and was
independent of the silver concentration on the TNT coating surface (1–1.5 wt%). After the following
three to four weeks, the concentration of the released Ag+ in PBS solutions changes, and depends on
the type of TNT/Ag nancomposite coating. For TNT4/Ag systems, it increases up to ca. 16 µg/L
and ca. 20 µg/L, respectively, and was higher in comparison to the reference sample (15–18.5 µg/L)
(Figure 2). The slight differences, which were observed between the TNT4/Ag and Ti/Ag samples,
may be due to the presence of silver grains only on the substrate surface. Ag ion release processes are
similar, but the presence of adsorbed H2O molecules on the TNT4/Ag surface (Figure 2) promotes
oxidation processes resulting in a higher concentration of Ag+ in comparison to Ti/Ag. In the case of
TNT6/Ag and TNT18/Ag coatings, the growth of silver grains proceeds mainly inside the nanotubes.
Silver ion release processes are impaired (4–6 µg/L), resulting in the inhibition of their concentration in
PBS solution after three weeks. The rapid increase in the silver ion release was observed for TNT/Ag
nanocomposite layers after four weeks, reaching levels of almost 24 µg/L, but were still lower in
comparison to previously reported ones. [22,27,28]. The effect of the initial decline and subsequent
rapid growth of the silver ions release rate from the polyamide/silver (PA/Ag) composites was also
noticed by Kumar et al. [36]. According to their explanation, the initial high release rate of Ag ions is
related to the oxidation processes of the particles deposited on the coating surface. To release Ag+ ions
from the interior part of the layer, water has to cross the diffusion barrier, which may be associated
with changes in the structural state of the material, and in the consequence with the oxidation and
migration of Ag ions from the interior part of the layer. This effect influences both the long term
antibacterial activity of these materials and the safe dose of silver for humans [37].

Staphylococcus aureus, as one of the clinically relevant pathogens in implant-related infections,
was chosen as a model to test the anti-biofilm activity of Ag-modified titanium surfaces. Because of
the fact that microbial cells in the biofilm exhibit different levels of metabolic activity: Metabolically
active cells, starving cells, dormant cells, viable-but-nonculturable cells, persisters, and finally dead
cells [38], at least two different methods should be used to assess a microbial biofilm. Therefore,
a Live/Dead BacLight Bacterial Viability kit was used to distinguish live and dead bacteria based on
cell membrane integrity and Alamar Blue staining was employed to check microbial cell metabolic
activity. The obtained results showed the inhibitory effect of the TNT4/Ag system, formed by the
deposition of the large and dispersed silver grains on the surface of TNT coatings, consisting of
small diameter nanotubes. This inhibitory effect was also observed in our earlier works concerning
TNT layers made of densely packed nanotubes of dTNT = 20–30 nm [10,39]. A weak inhibitory effect
was also observed for TNT18/Ag coatings enriched by Ag grains of a diameter lower than 15 nm.
Such an effect can be seen as the result of two combining factors, i.e., (a) the anatase form of TiO2

nanotubes; and (b) the presence of small silver grains, located on the top edge of each nanotube
and also on their walls. This effect was also strain-dependent, indicating that the S. aureus ATCC
29213 reference strain was susceptible to the biostatic/biocidal activity of the Ag presence as the
clinical S. aureus H9 strain. Because of the multidirectional activity of Ag nanoparticles, including the
increase in the cell wall permeability, the damage of membrane transport, the nucleic acid synthesis,
the protein production, and their enzymatic activity, the development of a total resistance to silver is
rather unlikely [40]. However, clinical strains could be less sensitive, due to possible long-term contact
with biomaterials containing Ag nanoparticles (e.g., dressings).
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Due to the fact that silver exhibits cytotoxicity to some cells at specified concentrations [41], in our
experiments, the TNT/Ag or/and Ti/Ag nanocomposites did not inhibit the growth of L929 fibroblasts
(Figure 4). The larger size of Eukaryotic cells in comparison to prokaryotic cells means that Eukaryotic
cells are more susceptible to a silver ion attack. Moreover, these cells also exhibit more structural
and functional redundancy than prokaryotic cells. Therefore, higher silver ion concentrations are
required to achieve comparable toxic effects, relative to bacterial cells [42]. Similarly, Liao et al. [43] and
Chang et al. [44] did not observe the inhibition of growth of human gingival fibroblasts (HGF) on the
Ti/Ag and TiO2/Ag coatings, compared to control specimens. Moreover, in our studies, the presence
of silver nanoparticles led to a greater proliferation of cells on their surface. Huang et al. [45] also
demonstrated that Ti plates coated with Ag showed better HGF cell viability and proliferation than
uncoated samples. The data presented in Figure 5 suggests that the coating morphology, its structure,
and concentration of silver nanoparticles dispersed on the TNT layer surface (ca. 1 wt% Ag vs.
1.5 wt% Ag) are the main factors affecting the adhesion (Figure 5a) and proliferation (Figure 5b) of
L929 fibroblasts.

Lu et al. [46] have tested the biocompatibility of Ti implants incorporated with different
concentrations of AgNPs (0.5, 1, 1.5, 2 M). For all tested concentrations, the beginning of the osteoblast
adhesion on the coatings was observed after one day of culture and spread well until seven days of
culture. However, after this, the inhibitory effect of 1 M Ag on cell proliferation was observed, what may
suggest that coatings with low concentrations of silver were more favorable for osteoblast growth.
Lu et al. [45] investigated Ti implants, whereas in our study, we tested TNT coatings with different
diameters of TiO2 nanotubes. Lan et al. [40] proved that TNT/Ag coatings exhibited a monotonically
increasing trend in MRC-5 human fibroblast cell line proliferation with a decreasing nanotube diameter.
According to these data, fibroblast adhesion and proliferation showed an obvious diameter-dependence
behavior of titania nanotubes enriched with silver. However, the concentration of silver nanoparticles
used by these authors was different than in our case.

An analysis of scanning electron microscopy images confirmed the results of the MTT assay
(Figure 5). The number of fibroblasts cultured for 72 h is significantly higher compared to the same
specimens incubated with cells for 24 h. Moreover, the cells cultivated on the nanotubes started to form
a filopodia spread between fibroblasts, which also attached the cells to the plate (Figure 5a–c). Similarly,
Swan et al. [47] noticed the filopodia extending processes in the nanopores, which can increase the
osteoblast adhesion. These thin membrane protrusions have a sensory activity in cells and they
are sensitive to nanotopography, causing changes in cell morphology by filopodia guidance [48,49].
The tested TNT coatings enriched with silver nanoparticles demonstrate biocompatible properties,
associated with a favorable cellular interaction with their surface. This phenomenon is important for
the long-term success of the implant incorporation [50]. Fibroblasts are the most important cells in
connective tissue, as one of the main components of peri-implant soft tissue, which is crucial to the
formation of the peri-implant mucosal seal and helps to prevent epithelial ingrowth [51]. In future
experiments, we are going to investigate the impact of TNT/Ag on the viability and proliferation
of other cells, such as osteoblasts, to verify the biocompatible properties of the tested nanotubes.
An explanation of how osteogenic cells interact with TNT/Ag in vitro would be helpful to design
better implants for bone regeneration and implant integration in vivo.

According to earlier reports, the TNT layer formation improved the cellular behaviors including
proliferation, adhesion, and spreading [52]. Therefore, the combination of antibacterial activity
(from Ag) and biointegration properties (from TiO2) of the TNT/Ag coating may be advantageous for
medical use.

Inflammatory and wound healing cells, such as peripheral blood mononuclear cells, including
lymphocytes and monocytes, release inflammatory cytokines and prostaglandins following cellular
adhesion and activation [53]. Cytokines and prostaglandins create a complex network, which modulate
cellular interaction, infiltration, communication, and behavior [54]. Moreover, additional activation and
matrix formation perpetuates inflammatory or wound healing responses. Cytokines and prostaglandins
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bind to surface cellular receptors, either inducing (pro-inflammatory) or inhibiting further intracellular
functions, intercellular communication, and extracellular matrix development [55,56]. For this reason,
cytokines and prostaglandins are key factors in evaluating cellular activation and communication.
In our study, the immunological tests were done using PBMCs isolated from rats.

The results from PGE2 analysis have revealed that after 4-h incubation of PBMCs with substrates,
the greatest PGE2 level occurs in the case of TNT6 and TNT6/1.5 wt% Ag specimens. These values
were higher compared to the ones observed for the cells incubated with pure titanium plates. In the
case of a 24-h incubation time, the PGE2 level was only higher when PBMCs were incubated with
TNT6 and TNT6/1.5 wt% Ag, in comparison to what was observed for the cells incubated with pure
titanium plates (Figure 6a). The earlier works proved that, in the case of osteoblasts, surface roughness
affects the cell response associated with the production of local factors such as PGE2 [57], stimulating
osteoclast-like cell formation and bone-resorbing activity [58]. The stimulatory effect of the rougher
surfaces on PGE2 production was greater on titanium plates than Ti6A14V alloys [59]. Moreover,
Yang et al. [60] showed that TiO2 nanotubes stimulated fetal rat calvarial cells to release a greater
amount of PGE2 than a mechanically treated titanium surface. In our study, we demonstrated that
all tested substrate activated PBMCs release greater amounts of PGE2 over time. This is a desirable
phenomenon since prostaglandin is believed to regulate growth factor synthesis such as transforming
growth factor β1 (TGF-β1) in osteoblast differentiation [61]. Furthermore, prostaglandins have been
demonstrated to stimulate both bone resorption and bone formation, but in favor of bone formation,
thus increasing bone mass and bone strength [62]. In contrast to the PGE2 results, TNF-α concentration
analysis after 4-h incubation revealed the highest level of cytokine during the incubation of cells with
nanotubes of a smaller diameter (TNT4 and TNT4/1.5 wt% Ag), compared to Ti substrates, whereas
incubation with TNT6 and TNT6/1.5 wt% Ag decreased cytokine secretion. Surprisingly, however,
a longer incubation time resulted in higher TNF-α production, not only in the case of TNT4 and
TNT4/1.5 wt% Ag, but also when PBMCs were incubated with TNT6 (Figure 6b). Tumor necrosis
factor α is a pro-inflammatory mediator, regulating a wide range of biological processes, including
cell proliferation, differentiation, and apoptosis. This cytokine stimulates the release of matrix
metalloproteinases (MMPs) and is secreted by the resident cells such as osteoblasts, gingival fibroblasts,
and immune cells. It is also responsible for an early reaction to microbial plaque accumulation,
attracting other inflammatory cells, and is a key regulator for the formation of osteoclasts and the local
resorption of bone tissue, effectively forming and enlarging gaps at the prosthesis-tissue interface [63].
On the other hand, TNF-α, at low levels, might promote wound healing by indirectly stimulating
inflammation and increasing macrophage growth factors. However, at higher levels, especially over
prolonged periods of time, it has a detrimental effect on healing [64]. Nevertheless, in our study,
we showed that, in tested substrates activating PBMCs to release greater amounts of TNF-α over time,
these values were much lower compared to the LPS-stimulated cells. In order to confirm or exclude
pro-inflammatory properties of the tested nanotubes in future experiments, we are going to investigate
the level of other pro-inflammatory cytokines (i.e., IL-6, IL-1β) and chemokines (i.e., monocyte
chemoattractant protein-1, macrophage inflammatory protein-1α) in the final supernatants harvested
after the incubation of PBMCs with the specimens in the presence or absence of LPS.

4. Materials and Methods

4.1. The Fabrication of Ti/TNT Coatings and Their Characterization

Titania nanotube coatings (TNT) on the surface of the titanium foil (5 mm × 70 mm, 99.6% Ti,
0.20 mm thick, STREM) were produced by electrochemical anodic oxidation, according to the
previously described method [4]. The anodization processes were carried out at potentials: 4 V
(TNT4), 6 V (TNT6), and 18 V (TNT18), and at an anodization time t = 20 min. The morphology of the
produced coatings was studied using a scanning electron microscope (SEM; Quanta 3D FEG; Carl Zeiss,
Göttingen, Germany; 30 kV accelerating voltage; micrographs were recorded under high vacuum
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using a secondary electron detector (SE)). The structure of the produced TNT layers was analyzed
using Raman spectroscopy (RamanMicro 200 PerkinElmer, Waltham, MA, USA; 200 (λ = 785 nm))
and X-ray photoelectron spectroscopy (XPS). XPS spectra were registered with monochromatized Al
Kα radiation (1486.6 eV) at room temperature, using a PHI 5700/660 ESCA spectrometer (Physical
Electronics, Lake Drive East, Chanhassen, MN, USA).

4.2. Synthesis and Characterization of TNT/Ag Nanocomposite Coatings

The fabricated TNT coatings were enriched with silver grains using the CVD method (horizontal
hot-wall reactor) under the conditions presented in Table 3. The precursor Ag(OOCC2F5) was
synthesized as reported [65,66]. The morphology of produced coatings was studied using a scanning
electron microscope (Quanta 3D FEG). The structure of the produced TNT layers was analyzed using
Raman spectroscopy and X-ray photoelectron spectroscopy (XPS).

Table 3. Summary of CVD conditions for the deposition of silver nanograins.

Precursor Ag(OOCC2F5)

Precursor weight (mg) 5 and 10
Vaporization temperature (TV) (K) 513

Carrier gas Ar
Total reactor pressure (p) (mbar) 3.0
Substrate temperature (TD) (K) 553

Substrates Ti/TNT
Deposition time (min) 30

The release studies of silver ions: Ti/Ag (reference sample) and TNT/Ag coatings, were immersed
in phosphate buffered saline (PBS) solution at 310 K (human body temperature) for one, three, and four
weeks. The silver concentration in elutes was measured by means of an inductively coupled plasma
mass spectrometry device (ICP MS Agilent Technologies 7700x, Yokogawa Analytical Systems Inc.,
Tokyo, Japan), calibrated with five dilutions (1.00, 2.50, 5.00, 7.50, 10.00 µg/dm3) of the Multi-Element
Aqueous CRM Environmental Calibration Standard A (VHG Labs., Manchester, NH, USA) with
an original silver concentration of 10.00 ± 0.05 µg/dm3. Qualitative and quantitative analysis of the
concentration of Ag was performed using the software MassHunter Workstation Software (Agilent
Technologies, Yokogawa Analytical Systems Inc., Tokyo, Japan) for ICP-MS Version A.01.02 G7201A
Build 291.22 Patch 5.

4.3. Antibacterial Properties of TNT/Ag Coatings

The produced TNT/Ag nanocomposite coatings on the surface of titanium foil were exposed
to the Staphylococcus aureus ATCC 29213 reference strain and S. aureus H9 clinical strain, which were
prepared in accordance with the previously used procedure [10]. The samples (size ca. 5 mm × 5 mm)
of studied TNT/Ag layers, Ti/Ag films, and titanium (reference sample—control K1) were placed
into S. aureus suspensions for 24 h and incubated in stable conditions at 310 K to form microbial
aggregates/biofilm [10]. To evaluate aggregate/biofilm formation, a Live/Dead BacLight Bacterial
Viability kit (L/D; Molecular Probes, Waltham, MA, USA), Alamar Blue (AB; BioSource, Dacula,
GA, USA) staining, and the CFU method were used. For all types of titanium samples, two independent
sets of experiments were prepared, each in quadrupluicate. The obtained results were presented as
a percentage of metabolically active bacteria (Alamar Blue staining) or alive bacteria (Live/Dead
method) reclaimed from the aggregates/biofilm formed on the titanium samples tested (Ti/Ag
and TNT/Ag), calculated from the mean percentage of AB reduction ± S.D. or the mean relative
fluorescence units RFU ± S.D., respectively, of the control K1 (considered as 100%) and test wells.
The nonparametric Kruskal-Wallis one-way ANOVA was used to compare the differences among
biomaterial samples. * p ≤ 0.05 was considered significant.
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4.4. L929 Cells Culture

L929 murine fibroblast cells (American Type Culture Collection) were cultured in 25 cm2 cell
culture flasks (Corning, NY, USA), at 310 K in a humidified atmosphere with 5% CO2. Culture medium
consisted of complete RPMI 1640 medium, containing 2 mM L-glutamine (Sigma-Aldrich, Darmstadt,
Germany), 10% heat-inactivated fetal bovine serum (FBS), 100 IU/mL penicillin, and 100 µg/mL
streptomycin (PAA Laboratories GmbH, Cölbe, Germany). The culture medium was changed every
three days. L929 cells were passaged when reaching 70–80% confluency.

4.5. L929 Cells Adhesion and Proliferation Assay on TNT

The effects of TiO2 nanotube coatings loaded with silver nanoparticles (TNT/Ag) on the L929 cells
adhesion (after 24 h) and proliferation (after 72 h) were studied using the MTT (3-(4,5-dimethylthiazole-
2-yl)-2,5-diphenyl tetrazolium bromide; Sigma Aldrich; Darmstadt, Germany) assay, as described
previously [10]. Briefly, the cells at a density of 1 × 104 cells/well were seeded in 24-well culture plates
on the samples sterilized by autoclaving, and incubated in 1 mL of complete RPMI 1640 medium
for 24 h and 72 h. After the respective incubation time, the specimens were accurately washed
three times with phosphate buffered saline (PBS) and transferred to a new 24-well plate. The MTT
(5 mg/mL; Sigma-Aldrich, Darmstadt, Germany) solution in RPMI 1640 medium without phenol red
(Sigma-Aldrich, Darmstadt, Germany) was added to each well and the plates were incubated at 310 K
for 3 h to form formazan. After aspirating the solution from each well, 500 µL of dimethyl sulfoxide
(DMSO; 100% v/v; Sigma Aldrich, Darmstadt, Germany) was added into each well to dissolve the
formazan crystals formed on the plate surface. After shaking for 10 min, the absorbance was measured
at 570 nm with the subtraction of the 630 nm background using a Synergy HT Multi-Mode Microplate
Reader (BioTek Instruments, Winooski, VT, USA). The blank groups (TNT/Ag incubated without
cells) were treated with the same procedures as experimental groups. Culture medium without the
TNT/Ag was used as a negative control in each experiment. All measurements were done in duplicate,
in three independent experiments. The results were reported as means ± standard error mean and
were analyzed by one-factor analysis of variance (ANOVA). As a post hoc test, the Tukey test was used.
The significance level was set at p < 0.05. The morphology changes of L929 cells grown on the surface
of TiO2 nanotube coatings loaded with silver nanoparticles were studied using Scanning electron
microscopy (SEM; Quanta 3D FEG; Carl Zeiss, Göttingen, Germany). For the SEM analysis, the samples
were prepared in accordance with the previously described procedure [10]. Briefly, after the selected
incubation period, the samples were washed three times with PBS to remove the non-adherent cells and
fixed in 2.5% glutaraldehyde (Sigma Aldrich, Darmstadt, Germany) for a minimum of 4 h. After that,
the specimens were rinsed three times with PBS and then dehydrated in a graded series of alcohol
(50, 75, 90, and 100%), before being dried in vacuum-assisted desiccators overnight and stored at room
temperature till SEM analysis was carried out.

4.6. Peripheral Blood Mononuclear Cells Isolation and Culture

Blood was sterile collected from anesthetized 10-week old male Wistar rats by cardiac puncture
into a solution of K3EDTA (Sigma Aldrich, Darmstadt, Germany). Peripheral blood mononuclear cells
(PBMCs) isolation was performed according to the density gradient centrifugation method, as we
described previously [67,68]. Briefly, the whole collected blood was diluted 1:1 (vol/vol) with PBS.
The diluted cell suspension was carefully layered onto the separation medium (Ficoll-Paque Plus,
Amersham Biosciences, Piscataway, NJ, USA) and centrifuged (35 min, 400× g). After centrifugation,
the PBMCs fraction was collected and washed twice with RPMI 1640 medium (RPMI-1640 with
L-glutamine; Sigma Aldrich, Darmstadt, Germany), before being suspended in the complete RPMI
medium, supplemented with 10% heat inactivated fetal bovine serum (FBS; PAA Laboratories GmbH,
Cölbe, Germany), 100 IU/mL penicillin, and 100 µg/mL streptomycin (PAA Laboratories GmbH,
Cölbe, Germany). PBMCs were cultured at 310 K in a humidified atmosphere with 5% CO2.
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4.7. PBMCs Culture Condition for Enzyme-Linked Immunosorbent Assay (ELISA)

Before culturing, the count and viability of freshly isolated PBMCs were determined by trypan
blue exclusion test, using the LUNATM automated cell counter (Logos Biosystems, Annandale,
VA, USA). In order to evaluate the immune response, the cells were seeded on titania nanotube
arrays in a 24-well plate (Corning, NY, USA). Prior to seeding, all substrates (sterilized by autoclaving)
were placed in the wells. For tumor necrosis factor α (TNF-α) and prostaglandin E2 (PGE2) assessments,
the cells were seeded at a density of 1 × 106 cells/well in a total volume of 1 mL RPMI 1640 medium,
supplemented with 10% FBS and antibiotics. The substrates were incubated with cells at 310 K
for 4 h or 24 h in an incubator providing a humidified atmosphere containing 5% CO2. Additional,
PBMCs without the TNT were stimulated with 1 µg/mL lipopolysaccharide (LPS extracted from
Escherichia coli 0111:B4, Sigma Aldrich, Darmstadt, Germany) for 4 h as a positive cellular control,
in order to evaluate the levels of TNF-α and PGE2 in the final supernatants harvested after the
incubation of cells with TNT. LPS was diluted in a pyrogen-free saline and added to the culture in
a volume of 100 µL. The final supernatants from each experiment were aspirated, centrifuged for 5 min
at 1000× g, and stored at 223 K. The final analysis for the release of TNF-α and PGE2 from PBMCs
(mostly monocytes) attached to the surface of the plates was made in duplicate. The concentration of
TNF-α and PGE2 was determined by standard sandwich ELISA kits from R&D Systems (Minneapolis,
MN, USA, cat. no. RTA00 and KGE004B, with a detection limit of less than 5 pg/mL and 31 pg/mL,
respectively), according to the manufacturer’s instructions. Colorimetric changes in the assays were
detected using a Synergy HT Multi-Mode Microplate Reader (BioTek Instruments, Winooski, VT, USA).

5. Conclusions

The advantage of the CVD method, which was applied to enrich the titania nanotube coatings
(TNT) with silver nanograins, is the possibility to control the size of Ag grains and their location on
the surface of the TNT matrix. The results of our works revealed that TiO2 nanotube diameters also
seem to be significant for the above mentioned control possibility.

The results of silver ion release from the surface of TNT/Ag coatings indicate the promising
properties of TNT4/1.5 wt% Ag layers, in which dispersed Ag grains are only located on the surface.
This type of coating revealed the best antibacterial responses and also characterizes the appropriate
biocompatibility, promoting fibroblast adhesion and proliferation. Moreover, the lower PGE2 secretion
of this sample was observed. Good antibacterial activity was also noted for the TNT6/1wt % Ag sample.
However, in this case, it depends on the Ag particle location, i.e., on tube top edges (the increase of
silver ions concentration in PBS solution released in the first week) or inside of them (the rapid increase
of Ag+ concentration after four weeks). In general, low levels of TNF-α secretion and simultaneous
PGE2 secretion suggest that TNT6/1 wt% Ag samples may perform better for biointegration.

In summary, the produced TNT/Ag nanocomposite coatings revealed better properties for medical
applications, in comparison to titania nanotube layers. The combination of antibacterial properties
of the TNT/Ag nanocomposite, coming from the presence of silver nanograins, and biocompatibility
given by TiO2, turns out to be promising for the medical applications of these materials.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/7/9/274/s1,
Figure S1: X-ray diffraction pattern of silver grains deposited on the surface of TNT6; Ag: 38.1 (111), 44.6 (200),
64.7 (220), 77.5 (311) and 81.5 (222), Ti: 35.1 (100), 38.4 (002), 40.2 (101), 53.0 (102), 70.7 (103), 76.3 (112) and
82.3 (004) (results of these investigations indicate on the amorphousness of the TNT6 coating, CVD, TD = 553 K,
p = 3 mbar, t = 30 min., m = 10 mg), Figure S2: Deconvolution of O(1s) peak in the XPS spectrum of TNT/Ag
coatings. Additionally, Ti(2p) and Ag(3d) XPS peaks are presented, Figure S3: Raman specta of TNT samples
heated up to 573 K.
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