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Abstract. The excited leptons that share the quantum numbers with the Standard Model leptons but have larger

masses are widespread in many promising new physics theories. A subclass of excited leptons that at low ener-

gies interact with the SM fermions dominantly through the effective coupling to lepton and fermion-antifermion

pair can be referred as leptomesons. I introduce possible generation of the baryon asymmetry of the universe

using these new particles. The discussed baryogenesis mechanisms do not contradict to the small neutrino

masses and the proton stability, and can be interesting for the collider experiments.

1 Introduction

In spite of the present success of the Standard Model (SM)

several observations indicate its possible nonfundamen-

tality: large number of the SM fermions, their arbitrary

masses and mixings, fractional electric charge of quarks,

etc. Among the diversity of new physics models the the-

ories of compositeness [1–8] try to solve these problems

by introducing a substructure of the SM particles, which

subcomponents are commonly referred as preons [1]. The

composite models may include in the particle content ra-

dial, orbital, topological, structural, and other excitations

of the ground state particles, e.g., an excited lepton that

shares leptonic quantum number with one of the existing

leptons, has larger mass and no color charge.

Besides the outlined issues on the particles and their

interactions that come from the laboratory studies, an-

other opened questions (including the dark matter prob-

lem) arise from the astrophysical observations of the uni-

verse around us. In particular, our universe appears to

be populated exclusively with baryonic matter rather than

antimatter [9]. However this baryon asymmetry can not

be explained within the Big Bang cosmology and the SM.

Possible scenarios of dynamical generation of the baryon

asymmetry during the evolution of the universe from a hot

early matter-antimatter symmetric stage are referred as the

baryogenesis (BG) mechanisms [10, 11], and include new

physics.

In the next section we discuss one example of the com-

posite models in question. The interactions and the mass

bounds for the excited leptons are outlined in section 3,

and the new BG scenarios that involve these particles are

discussed in section 4. Finally, we conclude in section 5.

ae-mail: dmitry.zhuridov@gmail.com

Table 1. The haplon quantum numbers

Haplon Spin [�] Q [|e|] C1 C2 SU(2)h
α 1/2 +1/2 3 1 2

β 1/2 −1/2 3 1 2

� 0 +1/2 3̄ 1 2

ck 0 −1/6 3 3 2

2 Composite model example

Consider the haplon models [7, 12], which are similar to

the earlier models with wakems and chroms [4, 13, 14],

and are based on the symmetry SU(3)c×U(1)em×SU(N)h,

where the new haplon group SU(N)h has the confine-

ment scale of the order of 0.3 TeV, and denotes, e.g.,

SU(2)L×SU(2)R. These models contain the two categories

of preons (haplons): the fermions α+1/2 and β−1/2, and
the scalars �+1/2 and c−1/6k , where k = r, g, b (“red, green,

blue”). Their quantum number assignment is given in Ta-

ble 1, where Q is the electric charge, C1 is the choice for

the SU(3)c representations in Ref. [7]1 and C2 is an alter-

native choice [12]. Then the haplon pairs can compose the

SM particles as ν = (α�̄), e− = (β�̄), u = (αc̄k), d = (βc̄k),

W− = (ᾱβ), W3 = (ᾱα − β̄β)/√2,. . . , and the new parti-

cles, e.g., a scalar leptoquark S +2/3
�

= (�c̄k), and the neutral

scalars S 0
�
= (��̄) and S 0

c = (ckc̄k). W3 mixes with the pho-

ton γ similarly to the mixing between γ and ρ0-meson. H
scalar can be a p-wave excitation of the Z, and the second

and third generations can be dynamical excitations. Notice

that S +2/3
�

, S 0
c and S 0

�
states (if their masses are small) may

contribute to the low-energy observables, e.g., so-called,

XYZ states [16]. 2

1Notice that C1 assignment does not provide a spin-charge separa-

tion [15].
2Notice that the SM results can be reproduced in some composite

models, at least at the tree level, due to the complementarity between

Higgs phase and confining phase [17, 18].
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However, new questions arise: Where does this pe-

culiar haplon picture come from? Can it, in turn, re-

sult from a substructure of haplons? Consider the two

scalar “prepreons”3 πk and π̄k, which are SU(3) triplets and

have the electric charges of −1/6 and +1/6, respectively.
Then the set of haplons with their electric and C2 color

charges can be reproduced by the triples of “prepreons”

(π̄r̄π̄ḡπ̄b̄ → {α, �}, πrπgπb → {β, �̄}, π̄ī π jπl → ck), while

additional mechanism of spin generation is required. One

can think of possible relation of spin to a circular color

currents similarly to some discussions in the context of

the condensed matter [20] and gravity [21] theories, taking

into account that the distribution of matter in a composite

state can be imagined (in particular, in the SU(3) Yang-

Mills theory) in terms of the wave functions or probabil-

ity distributions for the effective subcomponents of a finite

size [22–25]. Then a “spinning” and “nonspinning” states

of the same preon (e.g., α and �) may form a supersym-

metric multiplet.

Notice that the possibility of multihaplon states such

as (βc̄k�̄ck), (α�̄βc̄kβ̄ck), etc., gets more points from recent

discoveries of the multiquark hadrons [26].

3 Excited leptons

The excited lepton states defined in the introduction can be

particularly important if their masses are smaller than the

leptoquark and leptogluon masses, which can be natural

due to the absence of the color charge. The contact inter-

actions among the SM fermions f and the excited fermions

f ∗ can be generically written as [9]

LCI =
g2∗
2Λ2

∑
α,β=L,R

[
ηαβ( f̄αγμ fα)( f̄βγμ fβ)

+ η′αβ( f̄αγμ fα)( f̄ ∗β γμ f ∗β ) + η̃
′
αβ( f̄ ∗αγ

μ f ∗α )( f̄ ∗β γμ f ∗β )

+ η′′αβ( f̄αγμ fα)( f̄ ∗β γμ fβ) + H.c. + . . .
]
, (1)

where Λ is the contact interaction scale, g2∗ = 4π, and the

new parameter values are usually taken of |η j| ≤ 1.

Assuming nearly maximal couplings of |η j| � 1 and

the excited fermion masses of Mf ∗ � Λ, the present lower

bounds for Λ/
√|η j| ratios are of the order of few TeV [9].

However, if Eq. (1) expresses a “residue” effective inter-

actions between the composites (with respect to the funda-

mental interactions among their subcomponents) then |η j|
couplings can be small, and even the case of Mf ∗ � Λ <

1 TeV is not excluded for |η j| � 1 and Λ/
√|η j| >> Mf ∗ .

A particular type of excited leptons that at low ener-

gies interact with the SM fermions dominantly through

the contact terms we refer as leptomesons (LM).4 The rel-

evant contact terms (with η′′ couplings) can be realized,

e.g., through the leptoquark exchange.

3For supersymmetric models with “prepreons” see, e.g., Ref. [19].
4Notice that the same term “leptomeson” was used in the literature

for the bound states of colored excitations of e+ and e− [27].

4 Baryogenesis

Possible BG and the dark matter generation by a scalar

4-haplon state was considered in Ref. [12]. In this pro-

ceedings we discuss if fermionic LM states can provide

a successful BG [28]. Similarly to the sterile neutrino νR

case, depending on the LM properties, deviation from ther-

mal equilibrium can occur at either production or freeze-

out and decay (compare to the BG via νR oscillations [29]

and the usual leptogenesis [30], respectively). In both sce-

narios one should replace the Yukawa interactions of νR

by the contact interactions of LMs, which may result in

promising effects.

4.1 BG from LM oscillations

Once created in the early universe neutral long-lived LMs

oscillate and interact with ordinary matter. These pro-

cesses do not violate the total lepton number Ltot (for Dirac

LMs). However the oscillations violate CP and therefore

do not conserve individual lepton numbers Li for LMs.

Hence the initial state with all zero lepton numbers evolves

into a state with Ltot = L0 +
∑

i Li = 0 but Li � 0, where L0

is the lepton number of other particles.

At temperatures T � Λ the LMs communicate their

lepton asymmetry to neutrinos ν� and charged leptons �
through the effective interactions, e.g., B-conserving (and

L-conserving for Dirac LMs) vector couplings

∑
ψ�, f , f ′

∑
α,β=L,R

⎡⎢⎢⎢⎢⎢⎢⎣
ε
αβ
f f ′ψ�

Λ2
( f̄αγμ f ′α)(ψ̄�βγμN�β)

+
ε̃
αβ
f f ′ψ�

Λ2
(ψ̄�αγ

μ f ′α)( f̄βγμN�α)

⎤⎥⎥⎥⎥⎥⎥⎦ + H.c., (2)

where ψ� = �, ν� (� = e, μ, τ), the constants
(∼)
ε= 4πη′′ can

be real, f and f ′ denote either quarks or leptons such that

Qfα +Qf ′cα +Qψ�β = 0, and N� is the neutral LM flavor state

related to the mass eigenstates Ni as N�α =
∑n

i=1 Uα
�iNi.

Suppose that LMs of at least one type Ni remain in

thermal equilibrium till the electroweak symmetry break-

ing time tEW at which sphalerons become ineffective, and

those of at least one other type Nj come out-of-equilibrium

by tEW. Hence the lepton number of former (later) affects

(has no effect on) the BG. In result, the final baryon asym-

metry after tEW is nonzero. At the time t 
 tEW all LMs

decay into the leptons and the quarks (hadrons). For this

reason they do not contribute to the dark matter in the uni-

verse, and do not destroy the Big Bang nucleosynthesis.

The system of n types of singlet LMs of a given mo-

mentum k(t) ∝ T (t) that interact with the primordial

plasma can be described by the n × n density matrix ρ(t).
In a simplified picture it satisfies the kinetic equation [29]

i
dρ
dt

= [Ĥ, ρ] − i
2
{Γ, ρ} + i

2
{Γp, 1 − ρ}, (3)

where Γ (Γp) is the destruction (production) rate, and the

effective Hamiltonian can be written as

Ĥ = V(t) + U
M̂2

2k(t)
U†, (4)
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×N1
�

q

q′c
×

N1
�

Nj�

q, q′

q

q′c

×N1
�

q

Nj

�

q, q′
q′c

Figure 1. Feynman diagrams for the discussed contributions to the CP asymmetry, where the line direction shows either L or B flow,

“×” represents a Majorana mass insertion, and the black bulb represents a subprocess (e.g., a leptoquark exchange).

where M̂2 = diag(M2
1 , . . . ,M

2
n) with the masses Mi of Ni,

and V is a real potential.

One of the main features of the discussed BG from

LMs is that the 4-particle interaction cross section that

contributes to the destruction rate is proportional to the

total energy of the process s instead of the inverse propor-

tionality that takes place in the BG from νR oscillations.

Indeed, this cross section can be written as

σ(a + b → c + d) =
C
4π
|ε|2 s

Λ4
∝ s, (5)

where a, b, c and d denote the four interacting particles ( f ,
f ′, ψ� and N�), and C = O(1) is the constant that includes
the color factor in the case of the interaction with quarks.

In result, the interaction rate that equilibrates LMs,

Γ ∝ |ε|2 T 5

Λ4
, (6)

is suppressed by (T/Λ)4 with respect to the Higgs medi-

ated interaction rate in usual BG via νR oscillations.

The conditions that LMs of type Ni remain in thermal

equilibrium till tEW, while Nj do not, can be written as

Γi(TEW) > H(TEW), Γ j(TEW) < H(TEW), (7)

where H(T ) is the Hubble expansion rate. Due to the sup-

pression factor of (TEW/Λ)
4 the successful BG can be re-

alized with the relatively large couplings |ε| with respect

to the sterile neutrino Yukawas of Y ∼ 10−7 in the BG via

νR oscillations [29]. In particular, for Λ � 10 and 30 TeV

we have |ε| � 10−4 and 10−3, respectively. Hence the con-
sidered BG scenario can be relevant for the LHC and next

colliders without unnatural hierarchy of the couplings.

4.2 BG from LM decays

Suppose that the neutral LMs are Majorana particles

(N = Nc). Consider their out-of-equilibrium, CP- and L-
violating decays in the early universe. The relevant inter-

actions can be written as

εαR
f f ′ψ�

Λ2
( f̄αγμ f ′α)(ψ̄�RγμN�R) +

εS
f f ′ψ�

Λ2
( f̄R f ′L)(ψ̄�LN�R)

+
εT

f f ′ψ�

Λ2
( f̄σμν f ′)(ψ̄�LσμνN�R) + H.c. (8)

To be more specific in the following we consider the term

λ�i

Λ2
(q̄αγμq′α)(�̄RγμNiR), (9)

where λ�i = εαR
qq′�U

R
�i is a complex parameter. Consider

the interference of tree and one-loop diagrams5 shown in

Fig. 1. The final CP asymmetry that is produced in decays

of the lightest LMs N1

ε1 =
1

Γ1

∑
�

[Γ(N1 → �Rqαq′cα ) − Γ(N1 → �c
Rqc

αq′α)], (10)

can be non-zero if Im[(λ†λ)21 j] � 0. Using the width [33],

Γ1 =
∑
�

[Γ(N1 → �Rqαq′cα ) + Γ(N1 → �c
Rqc

αq′α)]

� 1

128π3
(λ†λ)11

M5
1

Λ4
, (11)

the condition for the decay parameter K ≡ Γ1/H(M1) > 3

(strong washout regime) translates into the limit of

(λ†λ)11 � 4 × 10−7 ×
(

Λ

10 TeV

)4
×

(
1 TeV

M1

)3
. (12)

The final baryon asymmetry can be written as

nB − nB̄

s
=

(
−28
79

)
× nL − nL̄

s
=

(
−28
79

)
× ε1κ

g∗
, (13)

where nB (nL) is the baryon (lepton) number density, s
is the entropy density, −28/79 is the sphaleron lepton-to-

baryon factor, and κ ≤ 1 is the washout coefficient that can

be determined by solving the set of Boltzmann equations.

The observed baryon asymmetry of the universe of [9]

ηB =
nB − nB̄

nγ
= 7.04 × nB − nB̄

s
� 6 × 10−10, (14)

where nγ is the photon number density, can be produced,

e.g., for K ∼ 100 with the degeneracy factor of

μ ≡ M2 − M1

M1

� 10−6
( M1

1 TeV

)
, (15)

which enters the resonant CP asymmetry of

εi ∼ Im{[(λ†λ)i j]
2}

(λ†λ)ii(λ†λ) j j

Γ j

Mj

MiMj

M2
i − M2

j

∼ μ−1 Γ1
M1

. (16)

Notice that the discussed effective LM-quark-quark-

lepton vertex can be realized, e.g., through the exchange

5Same two-loop self-energy graph as in Fig. 1 (right) was discussed in

the resonant BG scenarios of Refs. [31, 32], where the baryon asymmetry

is directly produced in the three-body decays of the sterile neutrinos. Al-

though these mechanisms involve B-violating interactions of qqqνR type,

they do not lead to fast proton decay due to the large values of νR mass

and the B-violating interaction scale of O(1) TeV.
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×νL νcL

Ni

q, qc

Figure 2. The discussed contribution to the neutrino masses (line

direction shows L flow).

×νL νcL

N

qL qR

×

×

LQ

LQ

qLqR

〈φ〉

〈φ〉

Figure 3. Leptoquark (LQ) contribution to the neutrino masses.

of the SU(2)L singlet scalar leptoquark S 0R with Y = 1/3.
Relevant interaction terms can be written as

−Lint = (gi j d̄c
RNiR + f j ūc

R�R)S
j
0R + H.c. (17)

Then the above expressions are valid with the replace-

ments of λ → g f ∗ and Λ → MS 0R . The relevant to the

successful BG values of the new couplings of |g| ∼ | f | ∼
0.01 − 0.1, can be interesting for the collider searches.

4.3 Neutrino masses

For Majorana LMs the effective terms of

εS
f f ν�

Λ2
f̄R fL ν̄�LN�R +

εT
f f ν�

Λ2
f̄σμν f ν̄�LσμνN�R + H.c. (18)

can generate the two-loop contributions to the observable

light neutrino masses mν� that is illustrated for f = q in

Fig. 2, and for a particular model with the leptoquarks in

Fig. 3. A simple estimate of this contribution is

mν� ∼
∑

i

(ε UR
�i)

2

(16π2)2

M3
i m2

q

Λ4
, (19)

where mq is the quark mass. Hence the present bound of

mν � 2 eV [34] can be easily satisfied.

5 Conclusion

The two new testable baryogenesis scenarios in the mod-

els with excited leptons are introduced, which do not con-

tradict to the observable neutrino masses. First, the BG
from LM oscillations may take place for relatively light

and long-lived LMs, which do not all decay before tEW.
Second, the BG from LM decays can be realized if all LMs

decay before tEW. A particular models based on the former

(later) BG proposal require detailed study of the neutrino

potential (of the Boltzmann equations) to be verified in the

future experiments. In both scenarios the baryon number

is violated only by the sphaleron processes that does not

affect the proton stability. Due to the relatively low tem-

peratures of the discussed BG mechanisms, an analog of

the gravitino problem [35, 36] does not exist there.
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