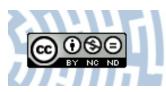


You have downloaded a document from RE-BUŚ repository of the University of Silesia in Katowice

Title: Boolean algebras admitting a countable minimally acting group

Author: Aleksander Błaszczyk, Andrzej Kucharski, Sławomir Turek

Citation style: Błaszczyk Aleksander, Kucharski Andrzej, Turek Sławomir. (2014). Boolean algebras admitting a countable minimally acting group. "Central European Journal of Mathematics" (Vol. 12, iss. 1, (2014), s. 46-56), doi 10.2478/s11533-013-0325-6



Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych Polska - Licencja ta zezwala na rozpowszechnianie, przedstawianie i wykonywanie utworu jedynie w celach niekomercyjnych oraz pod warunkiem zachowania go w oryginalnej postaci (nie tworzenia utworów zależnych).

Biblioteka Uniwersytetu Śląskiego

Ministerstwo Nauki i Szkolnictwa Wyższego

Central European Journal of Mathematics

Boolean algebras admitting a countable minimally acting group

Research Article

Aleksander Błaszczyk^{1*}, Andrzej Kucharski^{1†}, Sławomir Turek^{2‡}

1 Institute of Mathematics, University of Silesia, Bankowa 14, 40-007 Katowice, Poland

2 Institute of Mathematics, Jan Kochanowski University, Świętokrzyska 15, 25-406 Kielce, Poland

Received 20 November 2011; accepted 19 March 2013

Abstract: The aim of this paper is to show that every infinite Boolean algebra which admits a countable minimally acting group contains a dense projective subalgebra.

MSC: 54B35, 54A05, 52A01, 54D30

Keywords: Projective Boolean algebra • Dense subalgebra • Regular subalgebra • Cohen skeleton • Cohen algebra • Group of automorphisms

© Versita Sp. z o.o.

1. Regular and relatively complete subalgebras

All Boolean algebras considered here are assumed to be infinite. Boolean algebraic notions, excluding symbols for Boolean operations, follow the Koppelberg's monograph [9]. In particular, if $(\mathbb{B}, \land, \lor, -, \mathbf{0}, \mathbf{1})$ is a Boolean algebra, then $\mathbb{B}^+ = \mathbb{B} \setminus \{\mathbf{0}\}$ denotes the set of all non-zero elements of \mathbb{B} . A set $\mathbb{A} \subseteq \mathbb{B}$ is a subalgebra of the Boolean algebra \mathbb{B} , $\mathbb{A} \leq \mathbb{B}$ for short, if $\mathbf{1}, \mathbf{0} \in \mathbb{A}$ and \mathbb{A} is closed under Boolean operations or, equivalently, $u - w \in \mathbb{A}$ for all $w, u \in \mathbb{A}$. We shall write $\mathbb{A} \cong \mathbb{B}$ whenever \mathbb{A} and \mathbb{B} are isomorphic Boolean algebras. A non-empty set $X \subseteq \mathbb{B}^+$ is called a *partition* of \mathbb{B} whenever $x \land y = \mathbf{0}$ for distinct $x, y \in X$ and

$$\bigvee_{\mathbb{R}} X = \mathbf{1},$$

^{*} E-mail: ablaszcz@ux2.math.us.edu.pl

⁺ E-mail: akuchar@ux2.math.us.edu.pl

[‡] E-mail: sturek@ujk.edu.pl

i.e. the supremum of X in \mathbb{B} exists and equals 1. Therefore, a partition is just a maximal set consisting of non-zero pairwise disjoint elements of a Boolean algebra. The set of all partitions of \mathbb{B} will be denoted here by Part \mathbb{B} . For a Boolean algebra \mathbb{B} the symbol c(\mathbb{B}) denotes the Souslin number of \mathbb{B} , i.e.

$$c(\mathbb{B}) = \sup \{ |\mathcal{P}| : \mathcal{P} \in \operatorname{Part} \mathbb{B} \}.$$

A subalgebra \mathbb{A} of \mathbb{B} is called *regular*, $\mathbb{A} \leq_{\text{reg}} \mathbb{B}$ for short, whenever every partition of \mathbb{A} is a partition of \mathbb{B} ; see e.g. Koppelberg [10, p. 123], and also Heindorf and Shapiro [8, p. 14]. Let us recall that a set $X \subseteq \mathbb{B}^+$ is *dense* in a Boolean algebra \mathbb{B} if for every $b \in \mathbb{B}^+$ there exists $a \in X$ such that $a \leq b$. The cardinal number

$$\pi(\mathbb{B}) = \min\{|X| : X \subseteq \mathbb{B}^+ \text{ and } X \text{ is dense in } \mathbb{B}\}$$

denotes the *density* of \mathbb{B} . For $\mathbb{A} \leq \mathbb{B}$ we say that \mathbb{A} is a *dense subalgebra* of \mathbb{B} , $\mathbb{A} \leq_d \mathbb{B}$ for short, whenever \mathbb{A} is a dense subset of \mathbb{B} . It is easy to see that every dense subalgebra is regular, i.e. $\mathbb{A} \leq_d \mathbb{B}$ implies $\mathbb{A} \leq_{req} \mathbb{B}$.

Let us recall that a complete Boolean algebra \mathbb{B}^c is the completion of a Boolean algebra \mathbb{B} whenever \mathbb{B} is a dense subalgebra in \mathbb{B}^c . From the Sikorski Extension Theorem it easily follows that if \mathbb{A} is isomorphic to a dense subalgebra of \mathbb{B} then $\mathbb{A}^c \cong \mathbb{B}^c$; see e.g. Koppelberg [9]. However, there exist Boolean algebras, say \mathbb{A} and \mathbb{D} , for which $\mathbb{A}^c \cong \mathbb{D}^c$ but neither \mathbb{A} is isomorphic to a dense subalgebra of \mathbb{D} nor \mathbb{D} is isomorphic to a dense subalgebra of \mathbb{A} ; see e.g. [5].

If $\mathbb{A} \leq \mathbb{B}$, then an element $b \in \mathbb{B}^+$ is called \mathbb{A} -regular in \mathbb{B} whenever there exists an element $q(b) \in \mathbb{A}^+$ which is minimal among all the elements of \mathbb{A} which are greater than b, i.e.

$$q(b) = \min \{ d \in \mathbb{A} : b \le d \};$$

see also Koppelberg [10] for an equivalent definition of q(b). It is clear that if $\mathbb{A} \leq \mathbb{B}$ then every element of \mathbb{A} is \mathbb{A} -regular in \mathbb{B} since q(b) = b for every $b \in \mathbb{A}$ in that case. A Boolean algebra \mathbb{A} is called a *relatively complete* subalgebra of a Boolean algebra \mathbb{B} , $\mathbb{A} \leq_{rc} \mathbb{B}$ for short, provided that every element of \mathbb{B} is \mathbb{A} -regular. It is not difficult to show that every relatively complete subalgebra is regular; see Corollary 1.3 below. It is clear that if $\mathbb{A} \leq_{rc} \mathbb{B}$ and \mathbb{B} is complete, then \mathbb{A} is complete as well. Indeed, if $X \subseteq \mathbb{A}$ and $u \in \mathbb{B}$ is the supremum of X in \mathbb{B} , then q(u) is the supremum of Xin \mathbb{A} . From the definition we obtain immediately the following lemma.

Lemma 1.1.

If $\mathbb{A} \leq \mathbb{B}$ and for some $b, c \in \mathbb{B}^+$ there exist both q(b) and q(c) then the following conditions hold true: (a) for every $a \in \mathbb{A}^+$ there exist $q(a \wedge b)$ and $q(a \wedge b) = a \wedge q(b)$, (b) there exists $q(b \vee c)$ and moreover $q(b \vee c) = q(b) \vee q(c)$.

Some of the conditions in the next proposition were proved by Koppelberg [10]; see also Balcar, Jech and Zapletal [3] or Heindorf and Shapiro [8]. For the sake of completeness we give its proof.

Proposition 1.2.

If $\mathbb{A} \leq \mathbb{B}$ then the following conditions are equivalent:

- (a) $\mathbb{A} \leq_{\text{reg}} \mathbb{B}$,
- (b) for every $b \in \mathbb{B}^+$ there exists $a \in \mathbb{A}^+$ such that whenever $x \in \mathbb{A}^+$ and $x \leq a$, then $x \wedge b \neq 0$,
- (c) for every $b \in \mathbb{B}^+$ there exists $a \in \mathbb{A}^+$ such that $\mathbb{A} \upharpoonright (a \land -b) = \{0\}$,
- (d) the set of all non-zero A-regular elements of B is dense in B,
- (e) for every $b \in \mathbb{B}^+$ there exists $a \in \mathbb{A}^+$ such that $q(a \wedge b) = a$.

Proof. (a) \Rightarrow (b) Suppose that there exists $b \in \mathbb{B}^+$ such that below every $a \in \mathbb{A}^+$ there exists $x_a \in \mathbb{A}^+$ such that $x_a \wedge b = \mathbf{0}$. The set $X = \{x_a : a \in \mathbb{A}^+\}$ is dense in \mathbb{A} . By the Kuratowski–Zorn lemma there exists a maximal disjoint set $Y \subseteq X$. Since X is dense in \mathbb{A} , Y is a partition of \mathbb{A} . On the other hand, since $y \wedge b = \mathbf{0}$ for each $y \in Y$, the set Y is not a partition of \mathbb{B} . We have a contradiction.

(b) \Rightarrow (e) Let $b \in \mathbb{B}^+$ be fixed. By condition (b) there exists $a \in \mathbb{A}^+$ such that for each $x \in \mathbb{A}^+$ we have the following implication:

$$x \le a \implies x \land b \ne \mathbf{0}.$$
 (*)

In particular we have $0 < a \land b \leq a$. We shall show that $a \land b$ is an \mathbb{A} -regular element of \mathbb{B} . For this goal it is enough to show that

$$a = \min \{ y \in \mathbb{A} : a \land b \le y \}.$$

We set $Y = \{y \in \mathbb{A} : a \land b \leq y\}$. Since $a \in Y$, it remains to show that a is the lower bound of Y. Suppose that $a - x \neq \mathbf{0}$ for some $x \in Y$. Since $a - x \leq a$, by condition (*), we have $(a - x) \land b \neq \mathbf{0}$. On the other hand, we have $a \land b \land -x = \mathbf{0}$ because $x \in Y$. Again we get a contradiction.

(d) \Rightarrow (a) Suppose $X \subseteq \mathbb{A}^+$ is a partition of \mathbb{A} and there exists $b \in \mathbb{B}^+$ such that $x \wedge b = \mathbf{0}$ for every $x \in X$. By condition (d) we can assume that b is \mathbb{A} -regular. Clearly $\mathbf{0} < q(b)$ since $\mathbf{0} < b \leq q(b)$. Moreover, $q(b) \leq -x$ for each $x \in X$ since $b \leq -x$ for each $x \in X$. Therefore, X cannot be a partition of \mathbb{A} ; a contradiction.

Since the equivalence (b) \Leftrightarrow (c) and the implication (e) \Rightarrow (d) are obvious, the proof is complete.

Immediately from Proposition 1.2 we obtain the following corollary.

Corollary 1.3.

For each Boolean algebras A and \mathbb{B} , $\mathbb{A} \leq_{rc} \mathbb{B}$ implies $\mathbb{A} \leq_{reg} \mathbb{B}$.

A Boolean algebra \mathbb{B} is *countably generated* over a subalgebra $\mathbb{A} \leq \mathbb{B}$ if there exists a countable set $X \subseteq \mathbb{B}$ such that $\mathbb{B} = \langle \mathbb{A} \cup X \rangle$, i.e. \mathbb{B} is generated by the set $\mathbb{A} \cup X$. If \mathbb{A} is countably generated over \mathbb{C} , then we shall write $\mathbb{C} \leq_{\mathrm{rc}\omega} \mathbb{A}$ whenever $\mathbb{C} \leq_{\mathrm{rc}} \mathbb{A}$ and we shall write $\mathbb{C} \leq_{\mathrm{reg}\omega} \mathbb{A}$ if $\mathbb{C} \leq_{\mathrm{reg}} \mathbb{A}$.

For an infinite set X the symbol $\operatorname{Fr} X$ denotes the free Boolean algebra generated by the set X as the set of free generators. If |X| = |Y| then the Boolean algebras $\operatorname{Fr} X$ and $\operatorname{Fr} Y$ are isomorphic and are denoted by $\operatorname{Fr} \kappa$, where $\kappa = |X| = |Y|$. Clearly, if $X \subseteq Y$ then $\operatorname{Fr} X$ is a subalgebra of $\operatorname{Fr} Y$. In fact we have much more: if $X \subseteq Y$, then $\operatorname{Fr} X \leq_{\operatorname{rc}} \operatorname{Fr} Y$.

A Boolean algebra is called *projective* if it is a retract of a free Boolean algebra. Therefore, a Boolean algebra \mathbb{B} is projective whenever there exists a cardinal number κ and homomorphisms $f: \mathbb{B} \to \operatorname{Fr} \kappa$ and $g: \operatorname{Fr} \kappa \to \mathbb{B}$ such that the composition $g \circ f$ is the identity on \mathbb{B} . All free Boolean algebras are obviously projective but the converse statement is not true. A first internal characterization of projective algebras was obtained in topological language by Haydon [7]. In terms of relatively complete subalgebras it can be written as follows:

Theorem 1.4 (Haydon's Theorem).

An infinite Boolean algebra \mathbb{B} is projective iff there exists a sequence $\{A_{\alpha} : \alpha < |\mathbb{B}|\}$ of subalgebras of \mathbb{B} such that the following conditions hold true:

- $\mathbb{A}_0 = \{0, 1\},\$
- $\mathbb{A}_{\alpha} \leq_{\mathrm{rc}\omega} \mathbb{A}_{\alpha+1}$ for all $\alpha < |\mathbb{B}|$,
- $\mathbb{A}_{\alpha} = \bigcup \{\mathbb{A}_{\beta} : \beta < \alpha\}$ whenever $\alpha < |\mathbb{B}|$ is a limit ordinal,
- $\mathbb{B} = \bigcup \{ \mathbb{A}_{\beta} : \beta < |\mathbb{B}| \}.$

An algebraic proof of Haydon's Theorem can be found in Koppelberg [11] and also in Heindorf and Shapiro [8].

A Boolean algebra \mathbb{C} is called a *Cohen algebra* if the completion of \mathbb{C} is isomorphic to the completion of the product of countably many free Boolean algebras. The notion of a Cohen algebra is due to Koppelberg [11], motivated by the Cohen forcing. A topological theorem proved by Shapiro [12] says that every subalgebra of a free Boolean algebra is a Cohen algebra. In particular, a subalgebra of a projective Boolean algebra is a Cohen algebra; see e.g. [8, p.133].

On the other hand, dense subalgebra of a projective Boolean algebra need not be projective; see e.g. Koppelberg [10]. However, another topological result obtained by Shapiro [13] implies that every Cohen algebra has to contain a dense projective subalgebra. In much simpler way the same theorem follows from a nice characterization of Cohen algebras given by Koppelberg [11]. For the sake of this characterization Koppelberg introduced the notion of the Cohen skeleton. A collection S of subalgebras of a Boolean algebra \mathbb{B} is called a *Cohen skeleton* if it satisfies the following conditions:

- $\mathbb{A} \leq_{\mathsf{reg}} \mathbb{B}$ for every $\mathbb{A} \in S$,
- an element of S contains a dense countable subalgebra,
- the union of every nonempty chain in S is a dense subset of a member of S,
- for every $\mathbb{A} \in \mathbb{S}$ and every countable set $X \subseteq \mathbb{B}$ there exists $\mathbb{C} \in \mathbb{S}$ such that $\mathbb{A} \cup X \subseteq \mathbb{C}$ and a dense subalgebra of \mathbb{C} is countably generated over \mathbb{A} .

Then the Koppelberg characterization reads as follows.

Theorem 1.5 (Koppelberg's Theorem).

If a Boolean algebra $\mathbb B$ satisfies the countable chain condition, then the following conditions are equivalent:

- B is a Cohen algebra,
- B has a Cohen skeleton,
- B contains a dense projective subalgebra.

2. Automorphisms group acting on a Boolean algebra

We say that a group \mathcal{H} of automorphisms of a Boolean algebra \mathbb{B} acts minimally on \mathbb{B} if for each $b \in \mathbb{B}^+$ there exist $h_1, \ldots, h_n \in \mathcal{H}$ such that

$$h_1(b) \vee \dots \vee h_n(b) = \mathbf{1}. \tag{1}$$

see e.g. [1]. Clearly, if \mathbb{B} is a homogeneous Boolean algebra then the group of all automorphisms acts minimally on \mathbb{B} . In particular, for every $\kappa \geq \omega$ the group of all automorphisms of $\operatorname{Fr} \kappa$, the free Boolean algebra of size κ , acts minimally on $\operatorname{Fr} \kappa$. Since the Boolean algebra $\operatorname{Fr} \kappa$ is homogeneous, the size of this group is 2^{κ} . However, by homogeneity, there is a group \mathcal{H} of automorphisms of algebra $\operatorname{Fr} \kappa$ of size κ which acts minimally on $\operatorname{Fr} \kappa$. Moreover, Turek [15] has shown that there exists an infinite cyclic group of automorphisms acting minimally on $\operatorname{Fr} 2^{\omega}$.

Lemma 2.1.

If a group \mathcal{H} of automorphisms acts minimally on a Boolean algebra \mathbb{B} , then $c(\mathbb{B}) \leq |\mathcal{H}|$.

Proof. Suppose $\mathcal{P} \in \text{Part } \mathbb{B}$ is of cardinality greater than $|\mathcal{H}|$ and choose an ultrafilter p on \mathbb{B} . For every $h \in \mathcal{H}$ the set $\{h(u) : u \in \mathcal{P}\}$ is a partition of \mathbb{B} . Hence, there exists at most one element $u_h \in \mathcal{P}$ such that $h(u_h) \in p$. Choose an arbitrary $w \in \mathcal{P} \setminus \{u_h : h \in \mathcal{H}\}$. Then $h(w) \notin p$ for every $h \in \mathcal{H}$. On the other hand, since \mathcal{H} acts minimally on \mathbb{B} , there exist $h_1, \ldots, h_n \in \mathcal{H}$ such that

$$\mathbf{1} = h_1(w) \vee \cdots \vee h_n(w).$$

Since *p* is an ultrafilter, there exists $i \leq n$ such that $h_i(w) \in p$; we get a contradiction.

If \mathcal{H} is a group of automorphisms of a Boolean algebra \mathbb{B} , then a subalgebra $\mathbb{A} \leq \mathbb{B}$ is called to be an \mathcal{H} -proper subalgebra of \mathbb{B} , shortly $\mathbb{A} \leq_{\mathcal{H}\text{-prop}} \mathbb{B}$, whenever for every $a \in \mathbb{A}$ and every $h \in \mathcal{H}$ there exists $X \subseteq \mathbb{A}$ such that

$$h(a) = \bigvee_{\mathbb{R}} X$$

Clearly, if $h \upharpoonright \mathbb{A}$ is an automorphism of \mathbb{A} for every $h \in \mathcal{H}$, then \mathbb{A} is an \mathcal{H} -proper subalgebra of \mathbb{B} . We get the following proposition.

Proposition 2.2.

If \mathfrak{H} is a group of automorphisms of \mathbb{B} such that \mathfrak{H} acts minimally on \mathbb{B} and $\mathbb{A} \leq_{\mathfrak{H}-prop} \mathbb{B}$, then $\mathbb{A} \leq_{\mathrm{reg}} \mathbb{B}$.

Proof. Suppose $T \in Part \mathbb{A}$ and there exists $b \in \mathbb{B}$ such that

$$b \wedge t = \mathbf{0} \tag{2}$$

for every $t \in T$. There exist $h_1, \ldots, h_n \in \mathcal{H}$ with (1). Since $\mathbb{A} \leq_{\mathcal{H}\text{-prop}} \mathbb{B}$, for every $k \leq n$ and every $t \in T$ there exists a set $X_{t,k} \subset \mathbb{A}$ such that

$$h_k(t) = \bigvee_{\mathbb{D}} X_{t,k}.$$
(3)

Now, for every $k \le n$ we set $X_k = \bigcup \{X_{t,k} : t \in T\}$. We claim that

$$\bigvee_{\mathbb{A}} X_k = \mathbf{1} \tag{4}$$

for every $k \leq n$. For this goal we fix $a \in \mathbb{A}^+$ and $k \leq n$. Since $h_k^{-1} \in \mathcal{H}$ and \mathbb{A} is an \mathcal{H} -proper subalgebra of \mathbb{B} , there exists $z \in \mathbb{A}^+$ such that $z \leq h_k^{-1}(a)$. Since $T \in \text{Part }\mathbb{A}$, there exists $t \in T$ such that $z \wedge t \neq \mathbf{0}$. Therefore $h_k(z) \wedge h_k(t) \neq \mathbf{0}$ and hence $a \wedge h_k(t) \neq \mathbf{0}$. Then, by condition (3) we get $a \wedge x \neq \mathbf{0}$ for some $x \in X_{t,k}$. This completes the proof of condition (4). By this condition, for every $k \leq n$ we can choose $x_k \in X_k$ in such a way that

$$x_1 \wedge \dots \wedge x_n \neq \mathbf{0}.$$
 (5)

On the other hand, by conditions (2) and (3), we get $x \wedge h_k(b) = 0$ for every $k \leq n$ and every $x \in X_k$. Hence, by condition (1), we obtain

$$x_1 \wedge \cdots \wedge x_n = x_1 \wedge \cdots \wedge x_n \wedge (h_1(b) \vee \cdots \vee h_n(b)) \leq (x_1 \wedge h_1(b)) \vee \cdots \vee (x_n \wedge h_n(b)) = \mathbf{0},$$

which leads to a contradiction with (5).

We shall also use the following property of Boolean algebras with a group of automorphisms which acts minimally.

Lemma 2.3.

If a group of automorphisms \mathfrak{H} acts minimally on a Boolean algebra \mathbb{B} , then $\pi(\mathbb{B}) = \pi(\mathbb{B} \upharpoonright u)$ for every $u \in \mathbb{B}^+$.

Proof. If there exists a dense set $X \subseteq \mathbb{B} \upharpoonright u$ of size $\kappa \ge \omega$, then for every $h \in \mathcal{H}$ there exists in $\mathbb{B} \upharpoonright h(u)$ a dense set of the same size κ . By the assumptions, there exist $h_1, \ldots, h_n \in \mathcal{H}$ such that $h_1(u) \lor \cdots \lor h_n(u) = 1$. Hence \mathbb{B} admits a dense set of size κ .

Using Propositions 2.2 and 1.2 we can modify a bit the definition of \mathcal{H} -proper subalgebras.

Lemma 2.4.

Assume that a group \mathfrak{H} of automorphisms of a Boolean algebra \mathbb{B} acts minimally on \mathbb{B} . Then $\mathbb{A} \leq_{\mathfrak{H}\text{-prop}} \mathbb{B}$ iff for every $h \in \mathfrak{H}$ and every $a \in \mathbb{A}$ there exists a set $X \subseteq \mathbb{A}^+$ of pairwise disjoint elements such that

$$h(a) = \bigvee_{\mathbb{B}} X$$

Proof. Assume that $X \subseteq \mathbb{A}^+$ and $h(a) = \bigvee_{\mathbb{B}} X$. Let $Y \subseteq \mathbb{A}^+$ be a maximal in \mathbb{A}^+ disjoint set such that every element of Y is below some element of X. Then $\bigvee_{\mathbb{B}} X = \bigvee_{\mathbb{B}} Y$. Otherwise one can choose $u \in \mathbb{B}^+$ such that $u \leq \bigvee_{\mathbb{B}} X$ and $u \wedge y = \mathbf{0}$ for every $y \in Y$. By Propositions 1.2 and 2.2, we can assume that u is \mathbb{A} -regular in \mathbb{B} and $u \leq x$ for some $x \in X$. Since $u \leq -y$ for every $y \in Y$, we have $q(u) \leq -y$ for every $y \in Y$. We get a contradiction with the maximality of Y since $q(u) \in \mathbb{A}^+$ and $q(u) \leq x$. The opposite implication is trivial.

3. The main result

The next lemma gives a rather technical but very useful property of regular subalgebras.

Lemma 3.1.

Assume that $\mathbb{A} \leq_{\text{reg}} \mathbb{B}$ and $\pi(\mathbb{B} \upharpoonright b) > \pi(\mathbb{A})$ for each $b \in \mathbb{B}^+$. Then for every $b \in \mathbb{B}^+$ there exists an \mathbb{A} -regular element $c \in \mathbb{B}^+$ such that $c \leq b$ and $x \land b \neq \mathbf{0}$ implies $x \land (b - c) \neq \mathbf{0}$ for all $x \in \mathbb{A}^+$.

Proof. Since $\pi(\mathbb{B} \upharpoonright b) > \pi(\mathbb{A})$, the set $\{x \land b : x \in \mathbb{A}^+\}$ cannot be dense in $\mathbb{B} \upharpoonright b$. Hence, there exists $c \in (\mathbb{B} \upharpoonright b)^+$ such that $x \land b \land -c \neq \mathbf{0}$ whenever $x \in \mathbb{A}^+$ and $x \land b \neq \mathbf{0}$. By Proposition 1.2 we can assume that c is \mathbb{A} -regular since \mathbb{A} is a regular subalgebra of \mathbb{B} .

The last lemma can be extended as follows.

Lemma 3.2.

Assume $\mathbb{A} \leq_{\text{reg}} \mathbb{B}$ and $\pi(\mathbb{B} \restriction b) > \pi(\mathbb{A})$ for every $b \in \mathbb{B}^+$. Then for every $b \in \mathbb{B}^+$ there exists an infinite $\mathcal{P} \in \text{Part}(\mathbb{B} \restriction b)$ which consists of \mathbb{A} -regular elements and the following condition holds true: if $\mathcal{R} \subseteq \mathcal{P}$ is finite, then

$$x \wedge b \neq \mathbf{0} \implies x \wedge (b - \bigvee \mathcal{R}) \neq \mathbf{0}$$
 (6)

for each $x \in \mathbb{A}^+$.

Proof. Let us consider the family Σ of all sets $S \subseteq (\mathbb{B} \upharpoonright b)^+$ of disjoint \mathbb{A} -regular elements of \mathbb{B} which satisfy the following property:

(**) for every $x \in \mathbb{A}^+$ and every finite subfamily $\mathcal{R} \subseteq S$ we have (6).

By Lemma 3.1, there exists an \mathbb{A} -regular element $c \in \mathbb{B}$ such that the set $S = \{c\}$ fulfills the condition (**). Hence the family Σ is non-empty. By the Kuratowski–Zorn lemma there exists a maximal family $\mathcal{P} \in \Sigma$. It remains to show that $\bigvee_{\mathbb{B}} \mathcal{P} = b$. Suppose that there exists $d \in (\mathbb{B} \upharpoonright b)^+$ such that $d \land p = 0$ for each $p \in \mathcal{P}$. Again, by Lemma 3.1, we obtain an \mathbb{A} -regular element $c \leq d$ such that $x \land d \neq 0$ implies $x \land (d-c) \neq 0$ for every $x \in \mathbb{A}^+$.

To get a contradiction it is enough to show that $\mathcal{P} \cup \{c\} \in \Sigma$. For this goal assume that $\mathcal{R} \subseteq \mathcal{P}$ is finite and $x \wedge b \neq \mathbf{0}$. We shall show that

$$x \wedge (b - \bigvee (\mathcal{R} \cup \{c\})) \neq \mathbf{0}.$$

We have two cases. If $x \wedge d = 0$, then $x \leq -c$ since $c \leq d$. Since $\mathcal{P} \in \Sigma$, we get

$$\mathbf{0} < x \land b \land -\bigvee \mathcal{R} \le x \land b \land -\bigvee \mathcal{R} \land -c = x \land b \land -\left(\bigvee \mathcal{R} \lor c\right) = x \land b \land -\bigvee (\mathcal{R} \cup \{c\}).$$

If $x \land d \neq 0$, then $x \land d \land -c > 0$. Since $d \leq b$ and $d \land \bigvee \mathcal{R} = 0$, we have $d \leq b \land - \bigvee \mathcal{R}$. Therefore we get

$$\mathbf{0} < x \wedge d \wedge -c \leq x \wedge b \wedge - \bigvee \mathcal{R} \wedge -c = x \wedge b \wedge - \bigvee (\mathcal{R} \cup \{c\}),$$

which completes the proof.

If $\mathcal{R}_1, \mathcal{R}_2 \in \text{Part } \mathbb{B}$ then we say that \mathcal{R}_2 is a *refinement* of $\mathcal{R}_1, \mathcal{R}_1 \prec \mathcal{R}_2$ for short, if for every $u \in \mathcal{R}_2$ there exists $v \in \mathcal{R}_1$ such that $u \leq v$.

Proposition 3.3.

Assume $c(\mathbb{B}) = \omega$ and $\mathbb{A} \leq_{\text{reg}} \mathbb{B}$ and $\pi(\mathbb{B} \upharpoonright b) > \pi(\mathbb{A})$ for every $b \in \mathbb{B}^+$. Then for every finite collection $\mathcal{R}_1, \ldots, \mathcal{R}_n \in \text{Part } \mathbb{B}$, there exists $\mathcal{R} \in \text{Part } \mathbb{B}$ consisting of \mathbb{A} -regular elements such that

- (a) $\Re_i \prec \Re$ for every $i \leq n$,
- (b) for every $w \in \mathbb{R}_1 \cup \cdots \cup \mathbb{R}_n$ the set $\{u \in \mathbb{R} : u \leq w\}$ is a countable infinite partition of $\mathbb{B} \upharpoonright w$,
- (c) for every $w \in \mathcal{R}_1 \cup \cdots \cup \mathcal{R}_n$ and for every finite set $\mathcal{P} \subseteq \{u \in \mathcal{R} : u \leq w\}$ and every $x \in \mathbb{A}^+$ we have

$$x \wedge w \neq \mathbf{0} \implies x \wedge (w - \bigvee \mathcal{P}) \neq \mathbf{0}$$

Proof. Assume $\mathcal{R}_1, \ldots, \mathcal{R}_n \in \text{Part } \mathbb{B}$. Let $\mathcal{Q} = \{w_1 \land w_2 \land \cdots \land w_n : w_i \in \mathcal{R}_i, i \leq n\} \setminus \{\mathbf{0}\}$. It is easy to check that $\mathcal{Q} \in \text{Part } \mathbb{B}$ and $\mathcal{R}_i \prec \mathcal{Q}$ for every $i \leq n$. Clearly, for every $w \in \mathcal{R}_i$ the set

$$\{w_1 \wedge \cdots \wedge w_{i-1} \wedge w \wedge w_{i+1} \wedge \cdots \wedge w_n : w_i \in \mathcal{R}_i, i \leq n, i \neq j\} \setminus \{\mathbf{0}\} \subseteq \mathcal{Q}$$

is a partition of $\mathbb{B} \upharpoonright w$. By Lemma 3.2, for every $b \in \mathbb{Q}$ we obtain a partition \mathcal{R}_b of $\mathbb{B} \upharpoonright b$ consisting of \mathbb{A} -regular elements such that whenever $\mathcal{P} \subseteq \mathcal{R}_b$ is finite and $x \in \mathbb{A}^+$ then $x \wedge b \neq \mathbf{0}$ implies $x \wedge (b - \bigvee \mathcal{P}) \neq \mathbf{0}$. By Lemma 3.2, $|\mathcal{R}_b| \leq \omega$ since $c(\mathbb{B}) \leq \omega$. To complete the proof it is enough to set $\mathcal{R} = \bigcup \{\mathcal{R}_b : b \in \mathbb{Q}\}$.

We are ready to prove our main result. Assume \mathcal{H} is a countable group of automorphisms acting minimally on an infinite Boolean algebra \mathbb{B} . We shall show that the collection

$$\left\{\mathbb{A}\subseteq\mathbb{B}:\mathbb{A}\leq_{\mathcal{H}\text{-prop}}\mathbb{B}\right\}$$

of subalgebras of \mathbb{B} has got some properties which are similar to those of the Cohen skeleton. It appears that these properties determine that a Boolean algebra \mathbb{B} is a Cohen algebra.

Theorem 3.4.

Assume \mathfrak{H} is a countable group of automorphisms acting minimally on an infinite Boolean algebra \mathbb{B} . Then for every Boolean algebra \mathbb{A} such that $\pi(\mathbb{A}) < \pi(\mathbb{B})$ and $\mathbb{A} \leq_{\mathfrak{H}\text{-prop}} \mathbb{B}$ and for every $b \in \mathbb{B}^+$ there exists a Boolean algebra \mathbb{C} such that

$$\mathbb{A} \leq_{\mathsf{rc}\omega} \mathbb{C} \leq_{\mathcal{H}-\mathsf{prop}} \mathbb{B}$$

and $c \leq b$ for some $c \in \mathbb{C}^+$.

Proof. We can assume that $\mathcal{H} = \{h_n : n = 1, 2, ...\}$ and h_1 is the identity on \mathbb{B} . By Proposition 2.2 we have $\mathbb{A} \leq_{\text{reg}} \mathbb{B}$. Since \mathcal{H} acts minimally on \mathbb{B} and $|\mathcal{H}| \leq \omega$, by Lemma 2.1 we have $c(\mathbb{B}) \leq \omega$ and by Lemma 2.3 we also have $\pi(\mathbb{B}) = \pi(\mathbb{B} \mid u)$ for every $u \in \mathbb{B}^+$.

Let us consider the set Seq = $\bigcup \{ {}^{n}\omega : n < \omega \}$ of all functions from $n = \{0, 1, \dots, n-1\}$ into $\omega, n < \omega$. Let

Seq = {
$$s_n : n \in \omega$$
},

where s_0 is the empty function. For $g, f \in \text{Seq}$, we say that f extends g whenever $g \subseteq f$. Hence, f extends g iff dom $g \subseteq \text{dom } f$ and $f \upharpoonright \text{dom } g = g$. If $g \in {}^n \omega$ and $k \in \omega$ then the symbol $g \cap k$ denotes the sequence of length n + 1 that extends g and whose last term is k, i.e. $g \cap k$ is the function $f: n + 1 \to \omega$ such that $f \mid n = g$ and f(n) = k. We shall construct a sequence $\{\mathcal{P}_n: n < \omega\}$ of partitions of \mathbb{B} . Every \mathcal{P}_n consists of \mathbb{A} -regular elements of \mathbb{B} and are indexed by finite sequences of the length n, i.e. $\mathcal{P}_n = \{u_g: g \in {}^n \omega\}$, and the following conditions hold true:

- (i) $\mathcal{P}_0 = \{u_{\emptyset}\}$, where $u_{\emptyset} = \mathbf{1}$ and $\{b, -b\} \prec \mathcal{P}_1$,
- (ii) $\bigvee \{ u_{g^{\frown}i} : i < \omega \} = u_g \text{ for every } g \in {}^n \omega,$
- (iii) $u_{q^{\frown}i} \wedge u_{q^{\frown}j} = \mathbf{0}$ whenever $g \in {}^{n}\omega$ and $i \neq j$,
- (iv) for every $i \in \{1, ..., n\}$ and every $u \in \mathcal{P}_{n-1}$ there exists an infinite family $\mathcal{P} \subseteq \mathcal{P}_n$ such that $h_i(u) = \bigvee \mathcal{P}_i$
- (v) for every $u \in \mathcal{P}_{n-1}$, every finite subfamily $\mathcal{P} \subseteq \mathcal{P}_n \cap \mathbb{B} \upharpoonright u$ and every $a \in \mathbb{A}^+$, $a \land u \neq \mathbf{0}$ implies $a \land (u \bigvee \mathcal{P}) \neq \mathbf{0}$.

To obtain \mathcal{P}_1 we consider the family $\mathcal{R}_1 = \{b, -b\}$. From Proposition 3.3 we get a countable infinite partition \mathcal{R} of the algebra \mathbb{B} consisting of \mathbb{A} -regular elements such that the following conditions hold true:

- $\mathcal{R}_1 \prec \mathcal{R}$,
- if $w \in \mathcal{R}_1$ the set $\{u \in \mathcal{R} : u \leq w\}$ is a countable infinite partition of $\mathbb{B} \upharpoonright w$,
- if $w \in \mathcal{R}_1$ and $\mathcal{P} \subseteq \{u \in \mathcal{R} : u \leq w\}$ is a finite set and $x \in \mathbb{A}^+$ then $x \wedge w \neq \mathbf{0}$ implies $x \wedge (w \bigvee \mathcal{P}) \neq \mathbf{0}$.

Let $\mathcal{P}_1 = \mathcal{R}$. We enumerate all elements of the family \mathcal{P}_1 by elements of the set ¹ ω . Assume that we defined the partitions $\mathcal{P}_1, \ldots, \mathcal{P}_n$. Applying again Proposition 3.3 for partitions

$$\mathcal{R}_i = \{h_i(u) : u \in \mathcal{P}_n\},\$$

where $i \in \{1, ..., n\}$, we obtain a partition $\mathcal{R} \in Part \mathbb{B}^+$ which consists of \mathbb{A} -regular elements and satisfies the following conditions:

- (a) $\mathcal{R}_i \prec \mathcal{R}$ for every $i \leq n$,
- (b) for every $w \in \mathcal{R}_1 \cup \cdots \cup \mathcal{R}_n$ the set $\{u \in \mathcal{R} : u \leq w\}$ is a countable infinite partition of $\mathbb{B} \upharpoonright w$,
- (c) for every $w \in \mathcal{R}_1 \cup \cdots \cup \mathcal{R}_n$ and every finite set $\mathcal{P} \subseteq \{u \in \mathcal{R} : u \leq w\}$ and every $x \in \mathbb{A}^+$, $x \wedge w \neq \mathbf{0}$ implies $x \wedge (w \bigvee \mathcal{P}) \neq \mathbf{0}$.

We set $\mathcal{P}_{n+1} = \mathcal{R}$. By condition (b), the partition \mathcal{P}_{n+1} can be indexed by elements of ${}^{n+1}\omega$ in such way that for every $g \in {}^{n}\omega$,

$$\{v \in \mathcal{R} : v \le u_q\} = \{u_{q^n} : n < \omega\}$$

Let us observe that \mathcal{P}_{n+1} satisfies conditions (ii)–(v). In fact, since h_1 is the identity, $\mathcal{R}_1 = \mathcal{P}_n$ and hence $\mathcal{P}_n \prec \mathcal{P}_{n+1}$. Condition (b) implies (ii) and (iv) and condition (c) implies (v). The induction is complete.

For any $f, g \in \text{Seq}$ we denote $f \perp g$ whenever neither $g \subseteq f$ nor $f \subseteq g$. By conditions (ii) and (iii), for every $g, h \in \text{Seq}$ we get the following:

- (vi) $g \subseteq h$ and $g \neq h$ imply $u_h < u_q$,
- (vii) $g \perp f$ implies $u_f \wedge u_q = \mathbf{0}$.

Let us recall that $\{s_n : n \in \omega\}$ is the fixed enumeration of the set Seq of all finite sequences of natural numbers. Now we consider a sequence of algebras $\{\mathbb{A}_n : n \in \omega\}$ where \mathbb{A}_n is the subalgebra of \mathbb{B} generated by $\mathbb{A} \cup \{u_f : f \subseteq s_i, i \leq n\}$. Finally we set $\mathbb{C} = \bigcup \{\mathbb{A}_n : n \in \omega\}$. By (vi) and (vii) we have the following claim.

Claim 1. Every element of \mathbb{C}^+ is a finite sum of elements of the form $a \wedge u_f \wedge -u_{g_1} \wedge \cdots \wedge -u_{g_p}$, where $a \in \mathbb{A}$ and $g_i \perp g_j$ for distinct $i, j \leq p$ and $f \subsetneq g_i$ for all $i \leq p$ and $g_1, \ldots, g_p \in \{g : g \subseteq s_i, i \leq n\}$ for some $n \in \omega$.

By condition (i) there exists an element $c \in \mathbb{C}^+$ such that $c \leq b$. It is easy to see that \mathbb{C} is countably generated over \mathbb{A} . We shall prove that $\mathbb{A} \leq_{\mathrm{rc}} \mathbb{C}$. For this goal let us fix an element $x \in \mathbb{C}^+$. There exists some $n \in \omega$ such that $x \in \mathbb{A}_n$. We have to prove that there exists

$$q(x) = \min \{ d \in \mathbb{A} : x \le d \}.$$

By Lemma 1.1 (b), and Claim 1 we can assume that

$$x = a \wedge u_f \wedge - u_{q_1} \wedge \cdots \wedge - u_{q_n},$$

where $a \in \mathbb{A}$, $g_i \perp g_j$ for all distinct $i, j \leq p$ and $f \subseteq g_i$ for all $i \leq p$. Now, by Lemma 1.1 (a), it suffices to prove that there exists

$$q(u_f \wedge -u_{g_1} \wedge \cdots \wedge -u_{g_p})$$

Since for each $m \in \omega$ the partition \mathcal{P}_m consists of \mathbb{A} -regular elements, there exists $q(u_f)$. We shall show that $q(u_f \wedge -u_{g_1} \wedge \cdots \wedge -u_{g_p}) = q(u_f)$. Clearly we have $q(u_f) \in \mathbb{A}$ and $u_f \wedge -u_{g_1} \wedge \cdots \wedge -u_{g_p} \leq q(u_f)$. Suppose that there exists some $y \in \mathbb{A}^+$ such that $q(u_f) - y \neq \mathbf{0}$. Then we have $\mathbf{0} \neq -y \wedge u_f$ and by condition (v), we get

$$\mathbf{0} < -y \wedge \left(u_f - \bigvee \left\{u_{g_i \mid \text{dom} f+1} : i \leq p\right\}\right)$$

since for every $i \le p$ we have $f \subsetneq g_i$ and thus $\{u_{g_i \mid \text{dom} f+1} : i \le p\}$ is a finite subfamily of $\mathcal{P}_{\text{dom} f+1}$. Since $u_{g_i} \le u_{g_i \mid \text{dom} f+1}$ we obtain

$$\mathbf{0} < -y \wedge \left(u_f - \bigvee \{ u_{g_i} : i \leq p \} \right) = u_f \wedge - u_{g_1} \wedge \cdots \wedge - u_{g_p} \wedge - y.$$

Hence the element y cannot be an upper bound of $u_i \wedge -u_{g_1} \wedge \cdots \wedge -u_{g_p}$. To complete the proof of the theorem it remains to show that $\mathbb{C} \leq_{\mathcal{H}\text{-prop}} \mathbb{B}$. Let $c \in \mathbb{C}^+$ and $h_i \in \mathcal{H}$ be fixed. We shall show that there exists a set $T \subseteq \mathbb{C}$ such that $h_i(c) = \bigvee_{\mathbb{B}} T$. For this goal we fix some $e \in \mathbb{B}^+$ such that $e \leq h_i(c)$. There exists $n \in \omega$ such that $c \in \mathbb{A}_n$. By Claim 1 we can assume that

$$c = a \wedge u_f \wedge - u_{q_1} \wedge \cdots \wedge - u_{q_p},$$

where $a \in \mathbb{A}^+$, and $f, g_1, \ldots, g_p \in \{f : f \subseteq s_i, i \leq n\}$ and $g_i \perp g_j$ for all distinct $i, j \leq p$ and $f \subsetneq g_i$ for all $i \leq p$. We shall need the following claim.

Claim 2. If $\Re_1, \Re_2 \in \text{Part } \mathbb{B}$ and $\Re_1 \prec \Re_2$, then for every $v \in \Re_1$ and every $b \in \mathbb{B}^+$ such that $-v \land b \neq 0$ there exists $u \in \Re_2$ such that $0 \neq u \land b \leq -v \land b$.

In fact, since \Re_1 is a partition and $\neg (b \le v)$, there exists $v' \in \Re_1$ such that $v \land v' = \mathbf{0}$ and $b \land v' \ne \mathbf{0}$. Since $v' = \bigvee \{x \in \Re_2 : x \le v'\}$, there exists $u \in \Re_2$ such that $u \le v'$ and $u \land b \ne \mathbf{0}$. This completes the proof of the claim.

Now we return to the proof that $\mathbb{C} \leq_{\mathcal{H}\text{-prop}} \mathbb{B}$. Since e > 0 and $e \leq h_i(c)$, we have

$$u_f \wedge - u_{q_1} \wedge \cdots \wedge - u_{q_p} \wedge a \wedge h_i^{-1}(e) \neq \mathbf{0}.$$

Hence, by Claim 2 there exists $m \in \omega$ and an element $u_k \in \mathcal{P}_m$ such that dom $k \ge i$ and $u_k \le u_f \wedge -u_{g_1} \wedge \cdots \wedge -u_{g_p}$ and

(viii)
$$\mathbf{0} \neq u_k \wedge a \wedge h_i^{-1}(e) \leq u_f \wedge -u_{g_1} \wedge \cdots \wedge -u_{g_p} \wedge a \wedge h_i^{-1}(e).$$

Since $\mathbb{A} \leq_{\mathcal{H}\text{-prop}} \mathbb{B}$, by condition (iv) there exist families T_{u_k} , $T_a \subset \mathbb{A}^+$ of disjoint elements such that $\bigvee_{\mathbb{B}} T_a = h_i(a)$ and $\bigvee_{\mathbb{B}} T_{u_k} = h_i(u_k)$. By distributivity lows we have $\bigvee_{\mathbb{B}} T_a \wedge \bigvee_{\mathbb{B}} T_{u_k} = \bigvee_{\mathbb{B}} T$, where $T = \{x \wedge y : x \in T_a, y \in T_{u_k}\}$. Since $u_f \wedge -u_{q_1} \wedge \cdots \wedge -u_{q_p} \wedge a \wedge h_i^{-1}(e) = c \wedge a \wedge h_i^{-1}(e)$, by condition (viii) we have

$$\mathbf{0} \neq h_i(u_k) \wedge h_i(a) \wedge e \leq h_i(c) \wedge h_i(a) \wedge e \leq h_i(c) \wedge e.$$

There exists $t \in T$ such that $\mathbf{0} \neq t \land e \leq h_i(u_k \land a) \land e$. Since $e \in \mathbb{B}^+$ was chosen arbitrarily so that $e \leq h_i(c)$, we get

$$h_i(c) = \bigvee_{\mathbb{T}} T.$$

Hence we get $\mathbb{C} \leq_{\mathcal{H}\text{-prop}} \mathbb{B}$, which completes the proof.

As a immediate consequence of the last theorem we obtain the following theorem.

Theorem 3.5.

If a countable group of automorphisms acts minimally on a Boolean algebra \mathbb{B} , then \mathbb{B} contains a dense projective algebra of size $\pi(\mathbb{B})$.

Proof. Let $\tau = \pi(\mathbb{B})$ and let $\{b_{\alpha} : \alpha < \tau\}$ be a dense subset of \mathbb{B}^+ . Since countable Boolean algebras are projective, we can assume that $\tau > \omega$. By transfinite induction we define a sequence of Boolean algebras $\{\mathbb{A}_{\alpha} : \alpha < \tau\}$ such that $\mathbb{A}_{\alpha} \leq_{\mathcal{H}-\text{prop}} \mathbb{B}$ for every $\alpha < \tau$ and the following conditions hold true:

- (a) $\mathbb{A}_0 = \{0, 1\},\$
- (b) $\mathbb{A}_{\alpha} \leq_{\mathrm{rc}\omega} \mathbb{A}_{\alpha+1}$ for all $\alpha < \tau$,
- (c) $\mathbb{A}_{\alpha} = \bigcup \{\mathbb{A}_{\beta} : \beta < \alpha\}$ whenever α is a limit ordinal,
- (d) for every $\alpha < \tau$ there exists $a \in \mathbb{A}^+_{\alpha+1}$ such that $a \leq b_{\alpha}$.

If the Boolean algebras $\{\mathbb{A}_{\alpha} : \alpha < \gamma\}$ satisfying conditions (a)–(d) have been constructed for some $\gamma < \tau$ and γ is a limit ordinal we set $\mathbb{A}_{\gamma} = \bigcup \{\mathbb{A}_{\alpha} : \alpha < \gamma\}$. Definition of the \mathcal{H} -proper subalgebras easily implies that $\mathbb{A}_{\alpha} \leq_{\mathcal{H}\text{-prop}} \mathbb{B}$.

Assume that γ is a successor ordinal, e.g. $\gamma = \mu + 1$ and the conditions (a)–(c) are fulfilled for all $\beta \leq \mu$. It is clear that $\pi(\mathbb{A}_{\mu}) \leq |\mu| + \omega < \pi(\mathbb{B})$. Then, by Theorem 3.4 there exists a Boolean algebra \mathbb{C} such that

$$\mathbb{A}_{\mu} \leq_{\mathsf{rc}\omega} \mathbb{C} \leq_{\mathcal{H}-\mathsf{prop}} \mathbb{B}$$

and $a \leq b_{\mu}$ for some $a \in \mathbb{C}^+$. Then we set $\mathbb{A}_{\gamma} = \mathbb{C}$. Now, by conditions (a)–(c) and Haydon's Theorem (Theorem 1.4), we conclude that

$$\mathbb{D} = \bigcup \{ \mathbb{A}_{\alpha} \colon \alpha < \tau \}$$

is a projective Boolean algebra. From condition (d) it follows that \mathbb{D} is a dense subalgebra of \mathbb{B} since the set $\{b_{\alpha} : \alpha < \tau\}$ is dense in \mathbb{B} .

Remark 3.6.

The above theorem can also be proved by the use of Koppelberg's characterization of Cohen algebras; see Theorem 1.5. For this purpose one has to show that the family of all those subalgebras of \mathbb{B} which are invariant with respect to a countable group of automorphisms constitute a Cohen skeleton.

In case of complete Boolean algebras we obtain the following corollary.

Corollary 3.7.

If \mathbb{B} is a complete Boolean algebra and there exists a countable group of automorphisms acting minimally on \mathbb{B} , then $\mathbb{B} \cong (Fr \kappa)^c$, where $\kappa = \pi(\mathbb{B})$.

Proof. It is an immediate consequence of Theorem 3.5. Indeed, let a projective Boolean algebra \mathbb{A} be a dense subalgebra of \mathbb{B} . Then $\mathbb{B} \cong \mathbb{A}^c$ and, by Lemma 2.1, $\pi(\mathbb{A}) = \pi(\mathbb{A} \upharpoonright u)$ for every $u \in \mathbb{A}^+$. From a theorem of Shapiro [12] it follows that if \mathbb{A} is a projective Boolean algebra and $\pi(\mathbb{A} \upharpoonright u)$ is the same for every $u \in \mathbb{A}^+$, then \mathbb{A}^c is isomorphic to the completion of a free Boolean algebra; see also [8, p. 116]. This completes the proof since $\kappa = \pi(\mathbb{B})$.

Remark 3.8.

The above theorem was proved for the first time in [1] and next it was strongly improved by Balcar and Franěk [2]. They proved that if $\mathbb{B}(S)$ is the clopen algebra of the phase space of the universal minimal dynamical system over a semigroup S (see [2] for definitions) and $\mathbb{B}(S)$ is atomless and G is either concellative or has a minimal left ideal or is commutative, then $\mathbb{B}(S)$ is a Cohen algebra. In particular, if S is a countable group, then $\mathbb{B}(S)$ is a complete Boolean algebra which admits a countable group of automorphisms acting minimally on it (see also Bandlow [4], Turek [14], Geschke [6]).

Acknowledgements

The authors are deeply indebted to Professor Sabine Koppelberg for valuable comments to the early version of the paper.

References

- Balcar B., Błaszczyk A., On minimal dynamical systems on Boolean algebras, Comment. Math. Univ. Carolin., 1990, 31(1), 7–11
- Balcar B., Franek F., Structural properties of universal minimal dynamical systems for discrete semigroups, Trans. Amer. Math. Soc., 1997, 349(5), 1697–1724
- [3] Balcar B., Jech T., Zapletal J., Semi-Cohen Boolean algebras, Ann. Pure Appl. Logic, 1997, 87(3), 187–208
- [4] Bandlow I., On the absolutes of compact spaces with a minimally acting group, Proc. Amer. Math. Soc., 1994, 122(1), 261–264
- [5] Błaszczyk A., Irreducible images of $\beta \mathbb{N} \setminus \mathbb{N}$, Rend. Circ. Mat. Palermo, 1984, Suppl. 3, 47–54
- [6] Geschke S., A note on minimal dynamical systems, Acta Univ. Carolin. Math. Phys., 2004, 45(2), 35-43
- [7] Haydon R., On a problem of Pełczyński: Milutin spaces, Dugundji spaces and AE(0- dim), Studia Math., 1974, 52(1), 23–31
- [8] Heindorf L., Shapiro L.B., Nearly Projective Boolean Algebras, Lect. Notes Math., 1596, Springer, Berlin, 1994
- [9] Koppelberg S., Handbook of Boolean Algebras, 1, North-Holland, Amsterdam, 1989
- [10] Koppelberg S., Projective Boolean algebras, In: Handbook of Boolean Algebras, 3, North-Holland, Amsterdam, 1989, 741–773
- [11] Koppelberg S., Characterizations of Cohen algebras, In: Papers on General Topology and Applications, Madison, 1991, Ann. New York Acad. Sci., 704, New York Acad. Sci., New York, 1993, 222–237
- [12] Shapiro L.B., On spaces coabsolute to a generalized Cantor discontinuum, Soviet Math. Dokl., 1986, 33, 870–874
- [13] Shapiro L.B., On spaces coabsolute to dyadic compacta, Soviet Math. Dokl., 1987, 35, 434-438
- [14] Turek S., Minimal dynamical systems for ω -bounded groups, Acta Univ. Carolin. Math. Phys., 1994, 35(2), 77–81
- [15] Turek S., Minimal actions on Cantor cubes, Bull. Polish Acad. Sci. Math., 2003, 51(2), 129-138