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1. Regular and relatively complete subalgebras

All Boolean algebras considered here are assumed to be infinite. Boolean algebraic notions, excluding symbols for
Boolean operations, follow the Koppelberg's monograph [9]. In particular, if (B, A,V,—,0,1) is a Boolean algebra, then
B* =B\ {0} denotes the set of all non-zero elements of B. A set A C B is a subalgebra of the Boolean algebra B,
A < B for short, if 1,0 € A and A is closed under Boolean operations or, equivalently, u —w € A for all w,u € A. We
shall write A = B whenever A and B are isomorphic Boolean algebras. A non-empty set X C B* is called a partition
of B whenever x Ay = 0 for distinct x,y € X and
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A. Btaszczyk, A. Kucharski, S. Turek

.e. the supremum of X in B exists and equals 1. Therefore, a partition is just a maximal set consisting of non-zero
pairwise disjoint elements of a Boolean algebra. The set of all partitions of B will be denoted here by PartB. For a
Boolean algebra B the symbol ¢(B) denotes the Souslin number of B, i.e.

c(B) = sup{|P| : P € PartB}.

A subalgebra A of B is called regular, A <q B for short, whenever every partition of A is a partition of B; see e.g.
Koppelberg [10, p. 123], and also Heindorf and Shapiro [8, p. 14]. Let us recall that a set X C B* is dense in a Boolean
algebra B if for every b € B* there exists a € X such that ¢ < b. The cardinal number

7(B) = min{|X| : X C B* and X is dense in B}

denotes the density of B. For A < B we say that A is a dense subalgebra of B, A <4 B for short, whenever A is a
dense subset of B. It is easy to see that every dense subalgebra is reqular, i.e. A <4 B implies A <.q B .

Let us recall that a complete Boolean algebra B is the completion of a Boolean algebra B whenever B is a dense
subalgebra in B°. From the Sikorski Extension Theorem it easily follows that if A is isomorphic to a dense subalgebra
of B then A® = BS; see e.g. Koppelberg [9]. However, there exist Boolean algebras, say A and D, for which A® = D¢ but
neither A is isomorphic to a dense subalgebra of D nor D is isomorphic to a dense subalgebra of A; see e.g. [5].

If A < B, then an element b € B* is called A-regular in B whenever there exists an element g(b) € A" which is minimal
among all the elements of A which are greater than b, i.e.

gby=min{d € A:b < d};

see also Koppelberg [10] for an equivalent definition of g(b). It is clear that if A < B then every element of A is A-regular
in B since g(b) = b for every b € A in that case. A Boolean algebra A is called a relatively complete subalgebra of
a Boolean algebra B, A <, B for short, provided that every element of B is A-regular. It is not difficult to show that
every relatively complete subalgebra is regular; see Corollary 1.3 below. It is clear that if A <, B and B is complete,
then A is complete as well. Indeed, if X C A and u € B is the supremum of X in B, then g(u) is the supremum of X
in A. From the definition we obtain immediately the following lemma.

Lemma 1.1.
If A < B and for some b, c € B* there exist both q(b) and q(c) then the following conditions hold true:

(a) for every a € A* there exist g(a Ab) and q(a Ab) = a Aq(b),
(b) there exists q(bV c) and moreover q(bV c¢) = q(b)V q(c).

Some of the conditions in the next proposition were proved by Koppelberg [10]; see also Balcar, Jech and Zapletal [3] or
Heindorf and Shapiro [8]. For the sake of completeness we give its proof.

Proposition 1.2.
If A < B then the following conditions are equivalent:

(a) A <rg B,
(b) for every b € B* there exists a € At such that whenever x € A™ and x < a, then x Ab # 0,
(c) for every b € B* there exists a € At such that Al(a A—b) = {0},

(d) the set of all non-zero A-regular elements of B is dense in B,

(e) for every b € B* there exists a € A™ such that g(a Ab) = a.
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Proof. (a)= (b) Suppose that there exists b € B* such that below every a € A* there exists x, € A" such that
xsAb = 0. The set X = {x, : a € A"} is dense in A. By the Kuratowski-Zorn lemma there exists a maximal disjoint
set Y C X. Since X is dense in A, Y is a partition of A. On the other hand, since y Ab = 0 for each y € Y, the set ¥
is not a partition of B. We have a contradiction.

(b)=(e) Let b € B* be fixed. By condition (b) there exists a € A™ such that for each x € A" we have the following
implication:

x<a = xAb #0. (%)
In particular we have 0 < a Ab < a. We shall show that a Ab is an A-reqular element of B. For this goal it is enough
to show that

a=min{y € A:aAb <y}
Weset Y = {y € A: aAb < y}. Since a € Y, it remains to show that a is the lower bound of Y. Suppose that

a—x # 0 for some x € Y. Since a —x < a, by condition (*), we have (¢ —x)Ab # 0. On the other hand, we have
a/AbA\—x =0 because x € Y. Again we get a contradiction.

(d)=>(a) Suppose X C A* is a partition of A and there exists b € B* such that xAb = 0 for every x € X. By
condition (d) we can assume that b is A-regular. Clearly 0 < g(b) since 0 < b < g(b). Moreover, g(b) < —x for each
x € X since b < —x for each x € X. Therefore, X cannot be a partition of A; a contradiction.

Since the equivalence (b) < (c) and the implication (e) = (d) are obvious, the proof is complete. O

Immediately from Proposition 1.2 we obtain the following corollary.

Corollary 1.3.
For each Boolean algebras A and B, A <. B implies A <, B.

A Boolean algebra B is countably generated over a subalgebra A < B if there exists a countable set X C B such that
B = (AUX), Le. B is generated by the set AUX. If A is countably generated over C, then we shall write C <., A
whenever C <. A and we shall write C <eq A if C <o A.

For an infinite set X the symbol Fr X denotes the free Boolean algebra generated by the set X as the set of free

generators. If |X| = |Y| then the Boolean algebras Fr X and FrY are isomorphic and are denoted by Fr«, where
k = |X| = |Y|. Clearly, if X C Y then FrX is a subalgebra of FrY. In fact we have much more: if X C Y, then
FrX <. FrY.

A Boolean algebra is called projective if it is a retract of a free Boolean algebra. Therefore, a Boolean algebra B is
projective whenever there exists a cardinal number k and homomorphisms f: B — Frk and g: Frx — B such that the
composition gof is the identity on B. All free Boolean algebras are obviously projective but the converse statement is
not true. A first internal characterization of projective algebras was obtained in topological language by Haydon [7]. In
terms of relatively complete subalgebras it can be written as follows:

Theorem 1.4 (Haydon’s Theorem).
An infinite Boolean algebra B is projective iff there exists a sequence {A, : a < |B|} of subalgebras of B such that the
following conditions hold true:

e Ap={0,1},

o Ay <iew Agyr forall a < |B

o Ay =J{Ag: B < a} whenever a < |B| is a limit ordinal,

e B=J{Ag:B<|B|}.
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[
An algebraic proof of Haydon’s Theorem can be found in Koppelberg [11] and also in Heindorf and Shapiro [8].

A Boolean algebra C is called a Cohen algebra if the completion of C is isomorphic to the completion of the product
of countably many free Boolean algebras. The notion of a Cohen algebra is due to Koppelberg [11], motivated by the
Cohen forcing. A topological theorem proved by Shapiro [12] says that every subalgebra of a free Boolean algebra is a
Cohen algebra. In particular, a subalgebra of a projective Boolean algebra is a Cohen algebra; see e.g. [8, p.133].

On the other hand, dense subalgebra of a projective Boolean algebra need not be projective; see e.g. Koppelberg [10].
However, another topological result obtained by Shapiro [13] implies that every Cohen algebra has to contain a dense
projective subalgebra. In much simpler way the same theorem follows from a nice characterization of Cohen algebras
given by Koppelberg [11]. For the sake of this characterization Koppelberg introduced the notion of the Cohen skeleton.
A collection 8 of subalgebras of a Boolean algebra B is called a Cohen skeleton if it satisfies the following conditions:

o A<y Bforevery A €38,
e an element of 8 contains a dense countable subalgebra,
e the union of every nonempty chain in 8 is a dense subset of a member of §,

e for every A € § and every countable set X C B there exists C € 8 such that AU X C C and a dense subalgebra
of C is countably generated over A.

Then the Koppelberg characterization reads as follows.

Theorem 1.5 (Koppelberg’s Theorem).

If a Boolean algebra B satisfies the countable chain condition, then the following conditions are equivalent:

e B is a Cohen algebra,
o B has a Cohen skeleton,

e B contains a dense projective subalgebra.

2. Automorphisms group acting on a Boolean algebra

We say that a group 3 of automorphisms of a Boolean algebra B acts minimally on B if for each b € B there exist
hq,..., h, € H such that

hi(b)V -V hy(b) = 1. (1)

see e.g. [1]. Clearly, if B is a homogeneous Boolean algebra then the group of all automorphisms acts minimally on B.
In particular, for every k > w the group of all automorphisms of Fr«, the free Boolean algebra of size k, acts minimally
on Frk. Since the Boolean algebra Fr« is homogeneous, the size of this group is 2¥. However, by homogeneity, there
is a group H of automorphisms of algebra Fr« of size k which acts minimally on Fr k. Moreover, Turek [15] has shown
that there exists an infinite cyclic group of automorphisms acting minimally on Fr2®.

Lemma 2.1.
If a group H of automorphisms acts minimally on a Boolean algebra B, then c¢(B) < |H]|.

Proof. Suppose P € PartB is of cardinality greater than |H| and choose an ultrafilter p on B. For every h € H the
set {h(u) : u € P} is a partition of B. Hence, there exists at most one element u, € P such that h(u,) € p. Choose an
arbitrary w € P\ {u, : h € H}. Then h(w) & p for every h € H. On the other hand, since H acts minimally on B,
there exist hy, ..., h, € H such that

1= h(W)V -V ho(w).

Since p is an ultrafilter, there exists i < n such that h;(w) € p; we get a contradiction. O
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Boolean algebras admitting a countable minimally acting group

If 3 is a group of automorphisms of a Boolean algebra B, then a subalgebra A < B is called to be an H-proper
subalgebra of B, shortly A <g¢_prp B, whenever for every a € A and every h € 3 there exists X C A such that

h(a) = \/B X.

Clearly, if hTA is an automorphism of A for every h € H, then A is an H-proper subalgebra of B. We get the following
proposition.

Proposition 2.2.
It X is a group of automorphisms of B such that 3 acts minimally on B and A <s(_prop B, then A <y B.

Proof. Suppose T € PartA and there exists b € B such that
bAt=0 ()

for every t € T. There exist hq,..., h, € H with (1). Since A <s¢prop B, for every k < n and every t € T there exists
a set X;x C A such that

hi(t) = \/, Xo. (3)

Now, for every k < n we set Xy = [J{Xix : t € T}. We claim that

\, Xe=1 )

for every k < n. For this goal we fix a € A" and k < n. Since h;' € H and A is an H-proper subalgebra of B,
there exists z € A* such that z < h;'(a). Since T € PartA, there exists t € T such that zAt # 0. Therefore
hi(z) A hi(t) # 0 and hence a A hi(t) # 0. Then, by condition (3) we get a Ax # 0 for some x € X;,. This completes
the proof of condition (4). By this condition, for every kK < n we can choose x; € Xi in such a way that

Xi A AXy £ 0. ()

On the other hand, by conditions (2) and (3), we get x Ahy(b) = O for every k < n and every x € Xi. Hence, by
condition (1), we obtain

XA AXy = X1 A Axp A (B1(B)V -+ -V ha(b)) < (x1 A (b)) V-V (xa A (b)) = 0,

which leads to a contradiction with (5). O

We shall also use the following property of Boolean algebras with a group of automorphisms which acts minimally.

Lemma 2.3.
If a group of automorphisms H acts minimally on a Boolean algebra B, then n(B) = n(B[u) for every u € B*.

Proof. If there exists a dense set X C Blu of size k > w, then for every h € H there exists in B[ h(u) a dense set
of the same size k. By the assumptions, there exist hq, ..., h, € H such that hy(u)V --- Vh,(u) = 1. Hence B admits
a dense set of size «. O

Using Propositions 2.2 and 1.2 we can modify a bit the definition of H{-proper subalgebras.
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Lemma 2.4.
Assume that a group J of automorphisms of a Boolean algebra B acts minimally on B. Then A <g¢_pop B iff for every
h € 3 and every a € A there exists a set X C A" of pairwise disjoint elements such that

h(a) = \/IB X.

Proof. Assume that X C A* and h(a) = \/; X. Let ¥ C A" be a maximal in A* disjoint set such that every element
of Y is below some element of X. Then \/z X = \/p Y. Otherwise one can choose u € B* such that u < \/z X and
uAy = 0 for every y € Y. By Propositions 1.2 and 2.2, we can assume that u is A-reqular in B and u < x for some
x € X. Since u < —y for every y € Y, we have g(u) < —y for every y € Y. We get a contradiction with the maximality
of Y since g(u) € A*™ and g(u) < x. The opposite implication is trivial. O

3. The main result

The next lemma gives a rather technical but very useful property of regular subalgebras.

Lemma 3.1.
Assume that A <..q B and n(B[b) > m(A) for each b € B*. Then for every b € B* there exists an A-regular element
¢ € BY such that ¢ < b and x A\b # 0 implies x A(b—c) # 0 for all x € A™.

Proof. Since 7(B|b) > m(A), the set {x Ab:x € A"} cannot be dense in B|b. Hence, there exists ¢ € (B|b)" such
that x Ab A —c # 0 whenever x € A* and x A b # 0. By Proposition 1.2 we can assume that ¢ is A-reqular since A is
a reqular subalgebra of B. O

The last lemma can be extended as follows.

Lemma 3.2.
Assume A <.q B and nt(B[b) > 7(A) for every b € B*. Then for every b € B* there exists an infinite P € Part(B[b)
which consists of A-regular elements and the following condition holds true: if R C P is finite, then

XAb£0 = x/\(b—\/fR)#O (6)
for each x € A™.

Proof. Let us consider the family £ of all sets § C (B|b)* of disjoint A-reqular elements of B which satisfy the
following property:

(*x) for every x € A" and every finite subfamily R C 8 we have (6).

By Lemma 3.1, there exists an A-regular element ¢ € B such that the set 8 = {c} fulfills the condition (xx). Hence the
family X is non-empty. By the Kuratowski—Zorn lemma there exists a maximal family P € L. It remains to show that
Vg P = b. Suppose that there exists d € (B[b)* such that d Ap = 0 for each p € P. Again, by Lemma 3.1, we obtain
an A-reqular element ¢ < d such that x Ad # 0 implies x A (d —¢) # 0 for every x € A™.

To get a contradiction it is enough to show that P U {c} € L. For this goal assume that R C P is finite and xAb # 0.
We shall show that

XA (b—\/(.‘RU{c})) £0.

We have two cases. If xAd =0, then x < —c since ¢ < d. Since P € £, we get

0 < xAbA=\/R < xAbA=\/RA=c = x/\b/\—(\/fRVc) = xAbA=\/(RU{c}).
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If xAd#0, then xAdA—c > 0. Since d < b and dA\/R =0, we have d < bA—\/R. Therefore we get
0 < xAdA—c < xAbA=\/RA—c = xAbA=\/(RU{c}),

which completes the proof. O

If Ry, R, € PartB then we say that R, is a refinement of Ry, Ry < R, for short, if for every u € R, there exists v € Ry
such that u < v.

Proposition 3.3.
Assume c(B) = w and A <., B and 7(B[b) > n(A) for every b € B*. Then for every finite collection Ry,..., R, €
PartB, there exists R € PartB consisting of A-reqular elements such that

(@) Ri < R for every i <n,
(b) for every w € Ry U---UR, the set {u € R:u < w} is a countable infinite partition of Blw,
(c) for every w € Ry U ---UR, and for every finite set P C {u € R: u < w} and every x € A™ we have

XAw+#0 = XA(W—\/?)%O.

Proof. Assume Ri,...,R, € PartB. Let Q = {wyAwpaA---Aw, : w; € R, i < n}\ {0}. Itis easy to check that
Q € PartB and R; < Q for every i < n. Clearly, for every w € R; the set

{W1/\---/\W,-_1/\w/\w,-+1/\~--/\w,,:wl-EfR,-,ign,iqéj}\{O}gQ

is a partition of Bfw. By Lemma 3.2, for every b € Q we obtain a partition R, of B[b consisting of A-reqular elements
such that whenever P C R, is finite and x € At then xAb # 0 implies xA(b—\/P) # 0. By Lemma 3.2, |Ry| < w
since ¢(B) < w. To complete the proof it is enough to set R = [ J{R, : b € Q}. O

We are ready to prove our main result. Assume X is a countable group of automorphisms acting minimally on an infinite
Boolean algebra B. We shall show that the collection

{A g B:A Sf}ﬂprup B}

of subalgebras of B has got some properties which are similar to those of the Cohen skeleton. It appears that these
properties determine that a Boolean algebra B is a Cohen algebra.

Theorem 3.4.
Assume H is a countable group of automorphisms acting minimally on an infinite Boolean algebra B. Then for every
Boolean algebra A such that m(A) < 7(B) and A <g¢prop B and for every b € B* there exists a Boolean algebra C
such that

A Srcw C Si}ﬂprop B

and ¢ < b for some ¢ € C*.

Proof. We can assume that 3 = {h, : n = 1,2,...} and hy is the identity on B. By Proposition 2.2 we have
A <eg B. Since H acts minimally on B and |H| < w, by Lemma 2.1 we have ¢(B) < w and by Lemma 2.3 we also have
7(B) = 7(B[u) for every u € B™.

Let us consider the set Seq = |[J{"w : n < w} of all functions from n = {0,1,...,n—1} into w, n < w. Let
Seq = {s, : n € w},
Brought to you by | Uniwersytet Slaski - University of Silesia - Silesian University
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where sy is the empty function. For g,f € Seq, we say that f extends g whenever g C f. Hence, f extends ¢ iff
domg C domf and f[domg = g. If g € "w and k € w then the symbol g~k denotes the sequence of length n + 1 that
extends g and whose last term is k, i.e. g"k is the function f: n+1 — w such that f|n = g and f(n) = k. We shall
construct a sequence {P,: n < w} of partitions of B. Every P, consists of A-reqular elements of B and are indexed by
finite sequences of the length n, i.e. P, = {uy : g € "w}, and the following conditions hold true:

() Po = {ug}, where ug =1 and {b, —b} < Py,
(i) V{ug~; i < w} = uy for every g € "w,
(iii) ug~;Aug~; =0 whenever g € "w and i # j,
(iv) for every i € {1,...,n} and every u € P,_4 there exists an infinite family P C P, such that h;(u) = \/ P,
(v) for every u € P,_4, every finite subfamily P C P, NBlu and every a € A*, aAu # 0 implies a A(u—\/P) #0.

To obtain Py we consider the family Ry = {b, —b}. From Proposition 3.3 we get a countable infinite partition R of the
algebra B consisting of A-regular elements such that the following conditions hold true:

o ﬂ% < R,
o if w € Ry the set {u € R:u < w} is a countable infinite partition of B[w,

eifwe R and P C {ueR:u< w}is a finite set and x € At then x Aw # 0 implies x A (w—\/P) # 0.

Let P; = R. We enumerate all elements of the family P; by elements of the set 'w. Assume that we defined the partitions
P1, ..., P,. Applying again Proposition 3.3 for partitions

Ri ={hi(v) :ue?P,},

where i € {1,...,n}, we obtain a partition R € PartB* which consists of A-regular elements and satisfies the following
conditions:

(@) Ri < R for every i < n,
(b) for every w € Ry U---UR, the set {u € R:u < w} is a countable infinite partition of B[w,
(c) for every w € Ry U --- UR, and every finite set P C {u € R : v < w} and every x € A*, xAw # 0 implies

xN(w—=\/P)£0.
We set P,,1 = R. By condition (b), the partition P,,1 can be indexed by elements of "*'w in such way that for every
ge'w,
{veR:v<ug} ={ug~, :n <w}
Let us observe that P, satisfies conditions (ii)-(v). In fact, since hq is the identity, R; = P, and hence P, < P,1.
Condition (b) implies (it) and (iv) and condition (c) implies (v). The induction is complete.

For any f, g € Seq we denote f L g whenever neither g C f nor f C g. By conditions (ii) and (iii), for every g, h € Seq
we get the following:

(vi) g € hand g # h imply u, < ug,

(vii) g Lf implies usAug = 0.

Let us recall that {s, : n € w} is the fixed enumeration of the set Seq of all finite sequences of natural numbers. Now
we consider a sequence of algebras {A, : n € w} where A, is the subalgebra of B generated by AU{u;: f Cs;, i < n}.
Finally we set C = J{A, : n € w}. By (vi) and (vii) we have the following claim.

Claim 1.  Every element of C* is a finite sum of elements of the form anugN—ug N---N—ug, where a € A and
giLg; for distinct i,j < p and f C g; forall i <p and g1,...,g9, € {g:g Cs;, i <n} for some n € w.
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By condition (i) there exists an element ¢ € C* such that ¢ < b. It is easy to see that C is countably generated over A.
We shall prove that A <, C. For this goal let us fix an element x € C*. There exists some n € w such that x € A,.
We have to prove that there exists

g(x) =min{d € A: x < d}.

By Lemma 1.1 (b), and Claim 1 we can assume that
X = u/\u,/\—ug1/\-~~/\—ugp,

where a € A, g; L g, for all distinct i,j < p and f C g; for all i < p.

Now, by Lemma 1.1 (a), it suffices to prove that there exists
qusA—ug A---N—uy,).

Since for each m € w the partition P, consists of A-reqular elements, there exists g(us). We shall show that
q(u//\—ug1/\~~~/\—ugp) = q(uy). Clearly we have q(us) € A and usA—ug A---A—uy, < q(ur). Suppose that
there exists some y € A" such that g(us) —y # 0. Then we have 0 # —y Au; and by condition (v), we get

0 < _y/\ (Uf_\/{ug,-\domf+1 lSP})y

since for every i < p we have f C g; and thus {ug,jdoms+1 : { < p} is a finite subfamily of Pyomri1. Since vy, < tg, domr+1
we obtain

0< —g/\(u,—\/{ugi :igp}) = UrA—ug A A=ug, AN—y.

Hence the element y cannot be an upper bound of usfA—ug A---A—ug,. To complete the proof of the theorem it
remains to show that C <g¢pop B. Let ¢ € C* and h; € H be fixed. We shall show that there exists a set T C C such
that hi(c) = \/z T. For this goal we fix some e € B* such that e < h;(c). There exists n € w such that c € A,. By
Claim 1 we can assume that

c = a/\Uf/\—Ug.‘/\"'/\—UQP,
where a € A, and f,gy,...,g, € {f: f Cs;, i < n} and g; Lg; for all distinct i, j < p and f C g; for all i < p.

We shall need the following claim.

Claim 2. If Ry, R, € PartB and Ry < Ry, then for every v € Ry and every b € B such that —vAb + 0 there exists
u € Ry such that 0 £ uAb < —vAb.

In fact, since R is a partition and = (b < v), there exists v/ € Ry such that vAv' = 0 and bAV' # 0. Since
vV =\ {x €Ry: x <V'}, there exists u € R, such that u < v/ and uAb # 0. This completes the proof of the claim.

Now we return to the proof that C <g¢pp B. Since e > 0 and e < hi(c), we have
uA—ug A---N—ug, NaAh'(e) # 0.

Hence, by Claim 2 there exists m € w and an element u, € P, such that domk > i and ux < usA—ug A A—uy,
and

(vii) 0 # ux Aa Ah7'(e) S urA—ug, A---A—ug, Aa Ahi'(e).
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Since A <gcprop B, by condition (iv) there exist families T,,, T, C A" of disjoint elements such that \/; T, = h;(a) and
Vg Tu, = hi(ui). By distributivity lows we have \/g T, A\ Ty, = Vg T, where T = {xAy:x € T,, y € T, }. Since
urA—ug N---AN—ug,Na Ah7'(e) = cAa Ah7'(e), by condition (viii) we have

0 # hi(ug)ANhi(a)Ne < hi(c)Ahi(a)ANe < hic)Ae.

There exists t € T such that 0 # t Ae < hj(ug Aa) Ae. Since e € B* was chosen arbitrarily so that e < h;(c), we get

hi(c) = \/IB T.
Hence we get C <g¢_prop B, which completes the proof. O

As a immediate consequence of the last theorem we obtain the following theorem.

Theorem 3.5.
If a countable group of automorphisms acts minimally on a Boolean algebra B, then B contains a dense projective
algebra of size ().

Proof. Let T = x(B) and let {b, : @ < 7} be a dense subset of B*. Since countable Boolean algebras are projective,
we can assume that 7 > w. By transfinite induction we define a sequence of Boolean algebras {A, : a < 7} such that
Ay <g¢prop B for every a < 7 and the following conditions hold true:

(a) Ao ={0,1},

(b) Ay <tew Agqr forall a < T,

() Ay =J{Ag : B < a} whenever a is a limit ordinal,

d) for every a < 7 there exists @ € AY , such that a < b,,.
U a+1

If the Boolean algebras {A, : @ < y} satisfying conditions (a)—(d) have been constructed for some y < T and y is a
limit ordinal we set A, = [J{A, : « < y}. Definition of the J{-proper subalgebras easily implies that A, <s¢_prop B.

Assume that y is a successor ordinal, e.q. y = p+1 and the conditions (a)—(c) are fulfilled for all B < p. It is clear that
7(A,) < |u] + w < 7(B). Then, by Theorem 3.4 there exists a Boolean algebra C such that

Au Srcw C S?C*prup B

and a < b, for some @ € C*. Then we set A, = C. Now, by conditions (a)—(c) and Haydon's Theorem (Theorem 1.4),
we conclude that

D= J{As: a <1}

is a projective Boolean algebra. From condition (d) it follows that D is a dense subalgebra of B since the set {b, : a < 1}
is dense in B. O

Remark 3.6.

The above theorem can also be proved by the use of Koppelberg's characterization of Cohen algebras; see Theorem 1.5.
For this purpose one has to show that the family of all those subalgebras of B which are invariant with respect to a
countable group of automorphisms constitute a Cohen skeleton.

In case of complete Boolean algebras we obtain the following corollary.

Corollary 3.7.
If B is a complete Boolean algebra and there exists a countable group of automorphisms acting minimally on B, then
B = (Frk)¢, where k = (B).
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Proof. It is an immediate consequence of Theorem 3.5. Indeed, let a projective Boolean algebra A be a dense
subalgebra of B. Then B = A and, by Lemma 2.1, (A) = x(Alu) for every u € A™. From a theorem of Shapiro [12] it
follows that if A is a projective Boolean algebra and w(A[u) is the same for every u € A*, then A° is isomorphic to the
completion of a free Boolean algebra; see also [8, p. 116]. This completes the proof since x = 7(B). O

Remark 3.8.

The above theorem was proved for the first time in [1] and next it was strongly improved by Balcar and Franék [2].
They proved that if B(S) is the clopen algebra of the phase space of the universal minimal dynamical system over a
semigroup S (see [2] for definitions) and B(S) is atomless and G is either concellative or has a minimal left ideal or is
commutative, then B(S) is a Cohen algebra. In particular, if S is a countable group, then B(S) is a complete Boolean

algebra which admits a countable group of automorphisms acting minimally on it (see also Bandlow [4], Turek [14],
Geschke [6]).
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