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Abstract The violation of the Leggett–Garg inequality is studied for a quantum top
(with angular momentum Jz of integer or half-integer size), being driven by classical
Gaussian white noise. The form of a longitudinal (Jz) or a transverse (Jx ) coupling
of noise to the angular momentum affects both (i) to what extent the Leggett–Garg
inequality is violated and (ii) how this violation is influenced by the size j of the
spinning top and direction of a coupling (transverse or longitudinal). We introduce j-
independent method, using two- dimensional invariant subspace of the system Hilbert
space, which allows us to find out strict analytical solution for a noise-free system
and with longitudinal coupling and to extract from the whole dynamics effects purely
induced by a noise. It is demonstrated that in the semi-classical limit of a large angular
momentum j and for the transverse coupling, the Leggett–Garg inequalities become
more strongly violated as compared to the deep quantum regime of small j .
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1 Introduction

There are various properties of quantum systems which are worth to be designed and
controlled. Quantum entanglement [18] (and other types of spatial correlations [29]),
a useful resource for quantum information, is among these properties of time-evolving
quantum systems which attract considerable attention. Presence of entanglement can
be detected [15] by the violation of various forms of Bell inequalities [5]. Recent
studies on quantum correlations in time show that such correlations are no less inter-
esting as these in space [12]. Non-classical time correlations between outcomes of
measurements realized at different time instants are indicated by the violation of the
Leggett–Garg inequalities (LGIs) [21]. The Leggett–Garg and the Bell scenarios can
formally be unified [26]; however, interpretation of what is actually tested by LGIs
seems to be still unclear [27]. In Ref. [12], there is an up-to-date review of both basic
theoretical and experimental achievements related to the LGI.

The simplest form of the LGI reads [12]

K3 = C21 + C32 − C31 ≤ 1. (1)

The correlator K3 ≡ K3(t) is a combination of three time correlation functions given
by an expected value of an anti-commutator [12]C ji = 1

2 〈{Q(t j ), Q(ti )}〉 of a dichoto-
mous observable Q(t) in the Heisenberg picture with corresponding measurement
values q(t) = ±1 at three successive time instants t1 < t2 < t3. Due to the exis-
tence of superposition states, quantum mechanics should violate the above inequality.
Experimental testing of LGIs and search for their possible violation are subtle prob-
lems due to required non-invasiveness of measurement of the quantity Q [12] and
‘macroscopicity’ of quantum states. The LGIs are interesting by their own also in
microscopic systems [6] so the second requirement is often abandoned. There are also
certain conceptual difficulties related to the problem of the ‘clumsiness loophole’ [12].
In order to avoid confusion, we simply claim that the violation of the LGI in (1) is
a hallmark of the violation of the Leggett–Garg realism in the considered system. In
such a way, we attempt to encapsulate all the fundamental problems related to a proper
interpretation of the violation of the inequality (1), cf. Ref. [27].

Calculation of the correlation functions C ji for the case of strictly Markovian
evolution of a quantum system (either closed or open) is simplified by negligibility of
entanglement between the system and its environment [11]. For any quantum system
prepared at time t0 in a state ρ(t0) evolving according to Markovian and continuous
time dynamical semigroup ρ(t) = Λ(t − t0)ρ(t0), the correlation functions in Eq. (1)
can be expressed by the relation in the Schrodinger picture [6]:

C ji =
∑

l,m

qmqlTr
{
ΠmΛ(t j − ti )[ΠlΛ(ti )ρ(0)Πl ]

}
, (2)

where Πl are projector operators representing the measurement of the dichotomous
quantity Q = Q(0) with the measurement output either ql = +1 or ql = −1.

The design of appropriate features of evolving quantum systems is a subject of the
quantum control theory [8]. For quantum systems, an open-loop control is conceptually
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simpler than a closed loop one as it does not demand feedback with respect to an
output of a measurement performed on a quantum system [34]. There are various
types of open-loop driving. The simplest is a classical field (e.g., magnetic or electric)
which introduces a time- dependent component to a Hamiltonian of the quantum
system. The most complex is a quantum field such as n-mode bosonic field typical
for quantum optical problems [34]. Somewhere in between is a classical stochastic
driving (stochastic control [16]) which can be considered either as a classical field with
certain degree of randomness or as a suitable stochastic limit of a quantum driving [1].
There is a deep relation between dynamic properties of evolving systems and their
symmetries [8]. One of the best studied symmetries is related to rotation of the system
and its angular momentum [3]. Quantum systems described by Hamiltonians built
by angular momentum operators, either integer or half-integer, are called quantum
tops and are widely studied in various branches of physics starting from mathematical
physics [31] via quantum chaos [17] up to quantum networks [25]. As the quantum
tops have a well-defined classical limit [17], they are particularly important for studies
of quantum properties in a semi-classical limit. For instance, one can investigate how
quantum entanglement is maintained when a system or its part [7,9] becomes ‘more
classical’ and compare results with other approaches to a classical limit of quantum
systems [10,13,20].

In this work, we study a quantum top driven by Gaussian white noise and analyze the
noise impact on the violation of the LGI. We consider two ways how the noise source
couples to the top, each leading to quantitatively different behavior of the correlator
K3. The external noise weakens the violation of the LG inequality, but this effect is less
significant in the semi-classical limit of the large top. We show that, counterintuitively,
in the semi-classical regime, the Leggett–Garg realism is more likely to be broken than
in the very quantum regime.

The paper is organized as follows: In Sect. 2, we describe a model of the quantum
top driven by Gaussian white noise and discuss an equivalence of its evolution with a
suitably constructed Lindblad quantum dynamical semigroup. In Sect. 3, we present
and discuss properties of the function K3 for the noise-assisted system. We compare
this result to a purely deterministic, noiseless evolution. Next, before summarizing the
work in Sect. 4, we conjecture that the properties of the function K3 originate from
the fact that in the semi-classical limit the noise-driven and noiseless quantum tops
are less distinguishable.

2 Methods

2.1 Noise-assisted top

Quantum tops are studied in different contexts in various branches of physics.
Semi-classical methods related to the field of quantum chaos [17] are probably
most widely known. Here we consider a simple model of an angular momentum
J = (Jx , Jy, Jz), [Ji , J j ] = i h̄εi jk Jk , where εi jk is the completely antisymmetric
Levi-Civitá symbol. The eigenvalues Λ j of the operator J2 are Λ j = h̄2 j ( j + 1), j ∈
{0, 1/2, 1, 3/2, 2, . . .}. The time evolution of the top is governed by the Hamiltonian
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4914 J. Dajka et al.

H = h̄ω0
Jz
j

+ h̄λ0ξ̃ (t)
V

j
, V = Jz or V = Jx , (3)

where ξ̃ (t) is an external random driving (noise). The first term describes a precession
around the z axis with the scaled angular frequency ω0/j . The second term can be
interpreted as random kicks around the z axis for V = Jz or around the x axis for
V = Jx by random angles proportional to the coupling strength λ0/j and the square
root of the intensity D0 of noise (which is defined by its correlation function, see
below). We use such scaling because in the limit j → ∞ mean values of three
quantities

X = 〈Jx 〉
j

, Y = 〈Jy〉
j

, Z = 〈Jz〉
j

, (4)

become [33]

(X,Y, Z) = (sin θ cos φ, sin θ sin φ, cos θ), (5)

where θ is the polar angle and φ is the azimuthal angle. Therefore, (X,Y, Z) represents
a point on the Bloch sphere with radius R = 1. For large j 	 1, semi-classical
behavior should be uncovered.

We restrict our consideration to a linear coupling of the system with noise and two
possible choices: either V = Jz or V = Jx . The coupling to Jy is equivalent to the
coupling to Jx and therefore is not considered. The coupling V = Jz corresponds to a
simplest ‘dephasing-like’ coupling [4,22], whereas the second coupling V = Jx could
describe tunneling effects in some multistable systems. As we show below, these two
cases result in significantly different behaviors of the corresponding function K3.

The classical and real-valued stochastic driving ξ̃ (t) is modeled by zero-mean δ-
correlated Gaussian white noise,

〈ξ̃ (t)〉 = 0, (6)

〈ξ̃ (t)ξ̃ (s)〉 = 2D0δ(t − s), (7)

where 〈·〉 means the averaging over all realizations of the stochastic process ξ̃ (t) [14]
and the parameter D0 is the intensity of noise. We should remember that the charac-
teristic time of white noise, i.e., its correlation time, is zero, and therefore, it does not
introduce a new time scale into the system.

For each realization of ξ̃ (t), the density matrix �̃(t) of the system satisfies the
stochastic Liouville-von Neumann equation, namely

d

dt
�̃(t) = − iω0

j
[Jz, �̃(t)] − iλ0

j
ξ̃ (t)[V, �̃(t)]. (8)

The limit j → ∞ can be interpreted as a classical limit of the evolution equation
[17]. In other words, the larger the j is, the more classical the system is, because its
evolution can be effectively described as a classical dynamical system [9,17].
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2.2 Going to a dimensionless form

We introduce the dimensionless time s = ω0t and transform Eq. (8) to the form

d

ds
�(s) = − i

j
[Jz, �(s)] − iλ

j
ξ(s)[V, �(s)]. (9)

where

�(s) = �̃

(
s

ω0

)
= �̃(t), λ = λ0√

ω0
(10)

and rescaled δ-correlated noise

ξ(s) = 1√
ω0

ξ̃

(
s

ω0

)
(11)

has a zero mean value and the same intensity D0 as ξ̃ (t) in Eq. (7). Instead of searching
for a solution of Eq. (9), what is even for a white noise case a formidable task, we focus
our attention on averaged quantum dynamics, i.e., on time evolution of the quantum
state ρ(s) = 〈�(s)〉, which can be interpreted in a similar fashion as one does in the
case of reduced dynamics of open quantum systems [4]. The averaged dynamics of
a noise-driven system in Eq. (9) is determined by the exact master equation in the
dimensionless form [23,24]:

d

ds
ρ(s) = − i

j
[Jz, ρ(s)] − D

j2 [V, [V, ρ(s)]], (12)

where D = λ2D0 is the rescaled noise intensity (or equivalently the rescaled coupling
strength). This equation is of the Lindblad form [2], and for any initial preparation, its
solution ρ : s → ρ(s) is nonnegative [2]. It has been derived under the assumption
that initial conditions for the system alone are imposed independently of the stochastic
driving ξ(t), i.e.,

〈ξ(0)ρ(0)〉 = 〈ξ(0)〉ρ(0) = 0. (13)

It is worth noting that the master equation of a similar structure occurs for other models
of reduced dynamics. We mention two of them: a general class of nondissipative
continual measurements of an angular momentum [32] and exact dynamics of (1/2)-
spin in contact with a quantum bosonic thermostat via the dephasing interaction [22].

2.3 Two-dimensional invariant subspace

In the following sections, we will use the notation:
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|+〉 = 1√
2
(| j, j〉 + | j,− j〉) (14)

|−〉 = 1√
2
(| j, j〉 − | j,− j〉) (15)

for a linear combination of the Jz operator eigenstates with extreme eigenvalues m =
± j (for arbitrary j > 0). A subspace spanned by the basis vectors {|+〉 , |−〉} we
denote as Hq = span({|+〉 , |−〉}). It is clear that the states Eq. (14) and Eq. (15)
transform under an action of the rescaled operator Jz/j as follows:

1

j
Jz |+〉 = |−〉

1

j
Jz |−〉 = |+〉 (16)

and are orthonormal 〈α|β〉 = δαβ for α, β = 0, 1. From the above rules, we can con-
clude that the subspace Hq is invariant under the action of a time evolution generated
by Jz/j . It means that for an arbitrary large angular momentum j , one can always
construct a subspace which behaves as a qubit system. The action of the operator Jz/j
on the states |+〉 , |−〉 is equivalent to the action of the σx operator on the canonical
qubits states, i.e., eigenvectors of σz operator. In particular, it means that if a system is
projected on one of these two states |+〉 , |−〉, then after that a system starts to oscillate
between them with frequency ω0 (for D = 0).

3 Results

The Leggett–Garg scenario for testing realism requires a measurement of a dichoto-
mous variable. We consider a projective measurement of a single observable Q of the
form:

Q =
∑

q=±1

q Πq (17)

where

Π+ = |+〉 〈+| (18)

Π− = I − Π+, (19)

and I is the identity operator. In the following, we restrict our analysis to the three
different dynamical scenarios in Eq. (12): the noise-free (D = 0), with the longitudinal
coupling (V = Jz) and the transverse coupling (V = Jx ). We present analytical
solutions for a noise-free and longitudinal coupling for the initial states in the Hq

subspace and perform a numerical simulations for the transverse coupling.
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3.1 Noise-free system

Setting D = 0 in Eq. (12), for any initial state |ψ〉 ∈ Hq , the presented here scheme
of a measurement and dynamics is equivalent to the widely studied system of the
processing qubit. Taking it into consideration, we can immediately write down a form
of the K3 function, defined commonly for a fixed inter-measurement time interval τ

(i.e., s3 − s2 = s2 − s1 = τ ):

K3 = 2 cos(2τ) − cos(4τ). (20)

We want to stress that the definition of the states Eq. (14) and the following discussion
is j-independent. Such a specific choice of the measurement as defined in Eq. (18)
and Eq. (19) is particularly convenient since it allows to extract from the function
K3 the information related purely to the intensity D of noise ξ(t). In other words,
any modification of K3 from the above form will be, for fixed V in Eq. (3), solely a
noise-induced effect.

3.2 Longitudinal coupling

As we mentioned before, the action of the Jz/j operator on the states {|+〉 , |−〉} is
equivalent to the action of a Pauli matrix σx on the canonical qubit states. Thus, if
initial state belongs to the introduced invariant subspace, i.e., |ψ〉 ∈ Hq , then Eq. (12)
for V = Jz can be reduced to the matrix form:

d

ds
ρ(s) = −i[σx , ρ(s)] − D[σx , [σx , ρ(s)]], (21)

where ρ(s) is a matrix representation of a density operator in time s, computed in the
basis {|+〉 , |−〉}, and ρ(0) = |ψ〉 〈ψ |. We parameterized it as follows:

ρ(s) =
[
p+(s) c(s)
c∗(s) p−(s)

]
(22)

where p± = Tr(Π±ρ). Substituting Eq. (22) into Eq. (21), we obtain:

d

ds
ρ(s) =

[ −(r(s) + 2Dp(s)) i(p(s) − 2Dr(s))
−i(p(s) − 2Dr(s)) r(s) + 2Dp(s)

]
(23)

where p ≡ p+ − p− and r ≡ i(c∗ − c). From the above, we can write down the
equation of motion for real variables p and r in the matrix form:

d

ds

[
p(s)
r(s)

]
=

[−4D −2
2 −4D

] [
p(s)
r(s)

]
. (24)
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The general solution can be written as a superposition:

[
p(s)
r(s)

]
= Aeλ1sv1 + Beλ2sv2 (25)

where the vi and λi (for i = 1, 2) are, respectively, eigenvectors with associated
eigenvalues of the generator of a differential equation Eq. (24). In this case, we have:

[
p(s)
r(s)

]
= Ae−4Ds−2is

[
1
i

]
+ Be−4Ds+2is

[
1
−i

]
. (26)

From this general solution, one can calculate the correlator K3 for any initial state
|ψ〉 ∈ Hq , but in the following analysis, we will restrict our consideration to either
a state |+〉 or |−〉. From this assumption, one can find out that A = B = ± 1

2 . Since
variables p(s) and r(s) are assumed to be real, from the above, we can extract two
real solutions taking the real and imaginary part. Finally, we obtain:

[
p(s)
r(s)

]
= ±e−4Ds

[
cos(2s)
sin(2s)

]
. (27)

Next, we can define a conditional probability p(q2, s2|q1, s1) ≡ p(q2|q1) of obtaining
result q2 = ±1 in time s2 when in time s1 was observed the value q1 = ±1. Since
p±(s) = 1

2 (1 ± p(s)), then we have:

p(q2|q1) = 1

2

[
1 + (−1)δq1q2 |p(Δs)|] (28)

where Δs = s2 − s1. From that, one can construct a two-time probability
p(q2, s2; q1, s1) ≡ p(q2, q1) of obtaining a value q1 in time s1 and a value q2 in
time s2 as a product p(q2, q1) = p(q2|q1)pq1 . From that, one can find out that corre-
lation function Eq. (2) is equal:

Cs2s1 =
∑

q1,q2=±1

q1q2 p(q2, q1) = e−4DΔs cos(2Δs) (29)

for a system initially prepared either in |+〉 state or |−〉 state. Finally, we conclude
that K3 function [Eq. (1)] for coupling V = Jz and fixed inter-measurement is given
by:

K3 = e−4Dτ
(

2 cos(2τ) − e−4Dτ cos(4τ)
)

. (30)

3.3 Transverse coupling

Analytical calculations performed for the longitudinal coupling V = Jz are possible
due to a dynamic invariance of the subspace spanned by |±〉 states. Unfortunately, for
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Fig. 1 The Leggett–Garg function K3 versus inter-measurement time interval τ for selected values of the
noise intensity D. Top left panel the quantum top with j = 1 and the coupling operator V = Jx . Top right
panel: j = 5 and V = Jx . Bottom panel V = Jz and arbitrary j number. Numerical data in all figures are
prepared using QuTip, a Python-based computational toolbox [19] (Color figure online)

different types of coupling, it is no more the case. In particular, there is no method to
solve analytically Eq. (12) for a coupling V = Jx . For such a transverse coupling, we
perform numerical simulations using the Python-based toolbox QuTip [19] which is
particularly useful for studying finite-dimensional open quantum systems described
in terms of the Master Equations of a type Eq. (12), cf. Ref. [19] for details of the
applied numerical procedure. In order to compare effectively two different types of
coupling, the transverse with the longitudinal one, we restrict the analysis to a system
initial preparation ρ(0) = |+〉〈+|. The results are presented in Figs. 1 and 2.

4 Discussion

For the considered model, there are three elements affecting the LGI. The first, probably
most natural, is the noise intensity D which occurs as the amplitude of the non-unitary
part of the generator in Eq. (9). The second, more fundamental, is the way how external
noise couples to the evolving quantum top encoded in the operator V in Eq. (3). The
third, related to a semi-classical limit of the top evolution, is the size j of the top
related to the dimension of the Hilbert space of the quantum system [3]. As presented
in the last section, a solution of a noise-free system is j-independent; thus, it can be
used as a natural reference to the noise-induced couplings. Furthermore, a longitudinal
(V = Jz) coupling solution is also j-independent, and then, one can extract from this
effects purely connected with the noise intensity D (or strength of a coupling λ). And
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Fig. 2 The Leggett–Garg
function K3 versus
inter-measurement time interval
τ for the quantum top with
different values of j . The noise
intensity is D = 0.8 and the
coupling operator is V = Jx
(Color figure online)
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finally, a j-dependent solution for Jx coupling indicates how macrorealism is violated
with respect to the dimension of a system state space. That is why we propose such
specific form of the measured observable Eq. (17) and initial state |ψ〉 ∈ Hq , since
that model gives straightforward answers to all questions posed at the beginning. In
addition, at the end we analyze the impact of a special scaling of the angular momentum
operator J by a factor 1/j [Eq. (4)].

4.1 Impact of noise

Let us start analysis with the impact of the noise intensity D on time evolution and the
resulting violation of the LGI in Eq. (1). For the noiseless case D = 0, the correlator
K3 is explicitly given by the formula in Eq. (20) and can serve as a reference function.
With a gradual increase in D, the time evolution of the system becomes far from
unitary and one expects that genuine quantum properties, such as the violation of LGI,
become less detectable. This intuitive picture is confirmed by the analytical result
Eq. (30) for longitudinal coupling, where we see that dumping of LGI correlator is
of the exponential form. Examples of different forms of the K3 function for V = Jz
with respect to noise intensity D are present in the bottom panel in Fig. 1. In addition,
results from numerical simulations for transverse (V = Jx ) coupling are presented in
the upper panel in Fig. 1. In top left panel, the correlator K3 for the system with the
fixed quantum number j = 1 is depicted for several values of the noise intensity D. For
weak noise (D = 3/100), the function K3 represents weakly damped oscillations with
several τ -intervals in which the LGI is violated. For strong noise (the case D ≥ 3/10
in left panel), the impact of noise is decisive: One cannot detect the violation of the
LGI. For larger values of the quantum number j = 5 (top left panel), the violation of
the LGI can be observed for more numbers of windows of τ -intervals. Even for strong
noise with D = 8/10, the LGI is violated and can be detected in one short τ -interval
between successive measurements.

4.2 Role of coupling

Less intuitive is the influence of remaining two ingredients. Comparing plots in top left
and bottom panels of Fig. 1 for the coupling via the operators Jx and Jz , respectively,
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one concludes that for V = Jz the effect of noise is stronger: For D = 3/100, the
LGI is violated only in one window of the τ -interval, while for V = Jx , there are
four τ -intervals in which the LGI is violated. We observe that in order to maintain
the violation of LGI in a longer time for V = Jz , one needs the noise intensity to be
much smaller than in the case when V = Jx . It might be considered as counterintuitive
because in the case V = Jz , the quantum top effectively undergoes Markovian pure
dephasing [4], i.e., Jz(s) = Jz(0) is a constant of motion. It mimics an open quantum
system with no energy exchange with the source of noise. In the case of seemingly
stronger decoherence for V = Jx and for a fixed noise intensity D, the LGI violation
is weaker.

4.3 Dependence on the quantum number j

The effect of the size j of the top might also be counterintuitive. It seems that for
large j , the system should be more classical, and in consequence, the LGI should
be more robust. From Eq. (30), it is clear that for V = Jz the correlator K3 inherits
j-independence recognized already in the noiseless case D = 0 [Eq. (20)]. Com-
paring curves in top left and top right panels in Fig. 1, one notices that the violation
of the LGI is more stable with respect to noise for larger values of j . It is even
more apparent in the semi-classical limit of large j as presented in Fig. 2: When j
becomes larger and larger, the function K3 becomes closer and closer to the noise-
less case D = 0. In other words, for the semi-classical top, the violation of the LGI
becomes more significant comparing to the top operating at the deep quantum regime
of small j . The full analysis of how the maximum of K3 changes with respect to
j (for different noise intensity D) is presented in the upper panels of Fig. 3. From
these, we see surprisingly that the maximal violation of LGI is non-monotonic in
the whole domain, but it is only monotonically increasing for the values j > 1
and monotonically decreasing for j < 1 and relatively high values of noise inten-
sity.

The reason of this phenomenon becomes apparent if one examines the trace distance
Δ(s) between the noisy state ρ(s) when D > 0 and the noiseless state ρ0(s) when
D = 0. The trace distance is defined by the relation [30]

Δ(s) = 1

2
Tr |ρ(s) − ρ0(s)| , (31)

where |X | = √
X†X for any operator X . In Fig. 3, one can observe that at a fixed

time instant s, the distance between the noisy state ρ(s) and the noiseless state ρ0(s)
decreases when the quantum number j increases. As the trace distance is a quantifier
of distinguishability of states [30], we conclude that in the semi-classical limit j 	 1
the noisy and noiseless evolution are more similar than in the case of quantum system
with small values of j . This feature is responsible also for the behavior of the correlator
K3 and the violation of the Leggett–Garg realism.
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Fig. 3 The maximum of the Leggett–Garg function K3 for the transverse coupling (V = Jx ) versus: (top
left panel) the absolute value of the quantum top angular momentum j with different values of a noise
intensity D, (top right panel) the noise intensity D for different values of j and (bottom panel) the rescaled
noise intensity D/j . Panel at the bottom is used as a reference, since it shows a maximum value of the K3
function with respect to the noise intensity D/j , which is equivalent to the noise intensity D for a model
without scaling 1/j . It shows a little bit different behavior than in the rescaled model (top right panel), but
they exhibits the same main feature that higher j values are more resistant on the applied noise. As it is
seen from graphs, a scaling makes systems more distinguishable with respect to their angular momentum,
especially systems violate Leggett–Garg inequalities differently for all values of a noise intensity, whereas
in the non-rescaled model, we can distinguish between different j-states only in the regime of high D values.
Interesting is a fact that a system with j = 1 is enormously low resistant on the noise (in both models) and
system with j = 1/2 is enormously high resistant (in non-rescaled model) (Color figure online)

Fig. 4 Trace distance calculated
between the noisy state ρ(s) (for
D = 0.8 and V = Jx ) and
noiseless state ρ0(s) (D = 0)

for selected values of j (Color
figure online)
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4.4 Role of scaling

At the end, we present how the special scaling of the angular momentum J operator
by a factor 1/j in Eq. (4) (which we use in order to analyze a semi-classical behavior)
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affects a violation of the Leggett–Garg inequalities. Let us notice a very different
physical content of both the scaled and non-scaled models. The first describes a well-
defined semi-classical limit of a well-established quantum system, whereas the second
is an essentially quantum system described by quantum numbers of a relatively large
values.

As it can be inferred from Eq. (12), a model without scaling can be restored by the
replacement: s → js and D → j D, which transform Eq. (30) into the relation:

K3 = e−4Dj2τ
(

2 cos(2 jτ) − e−4Dj2τ cos(4 jτ)
)

. (32)

In this case, we observe a strong dumping of the K3 function amplitude for the systems
with higher angular momentum j . In addition, without scaling, a period of K3 function
is also affected by the total angular momentum of the system. We want to stress that
the j-independent solution for the operators Eq. (4) has a source in the special action
of the operator Jz/j on the states |+〉, |−〉 in Eq. (16).

We also analyze an impact of scaling at the maximum of the K3 amplitude with
respect to j number for a transverse coupling. For this reason, we present the results
for non-rescaled model in the bottom panel in Fig. 4. Surprisingly, we observe very
similar behavior like in main (scaled) model in this paper, i.e., systems with higher
angular momentum j are more resistant with respect to noise in the context of violation
of the macrorealism. It is an opposite behavior if one compares it with the Jz coupling
for non-scaled model [Eq. (32)].

5 Conclusions

Realism of classical objects seems to be unquestionable. Almost no one doubts that
‘there is a moon when nobody looks’ [28]. The case of a ‘flux’ [21] is less obvious,
whereas for microscopic objects, the violation of Leggett–Garg realism is probably as
generic as the violation of local realism of composite systems [18].

In this work, we study the quantum top assisted by classical Gaussian white noise
starting from a very quantum regime of small values of the quantum number j and
finishing in the semi-classical regime of large j . We investigate the violation of the LGI
involving the function K3 in Eq. (1). The measurement defined in Eq. (18) is chosen
in such a way that in the absence of noisy driving, the correlator K3 is j-independent.
We consider two types of coupling V in Eq. (3). For V = Jz , the function K3 is shown
to be j-independent, although the LG inequality is, in the presence of noise, less likely
violated. For V = Jx , the violation of the LG inequality is more stable than in the
case V = Jz . We observe that for V = Jx the violation still occurs but for the noise
intensity larger than in the case V = Jz . In other words, for a given amount of noise
in the system and the coupling V = Jx , the Leggett–Garg realism is ‘better violated’
than in the case V = Jz . Moreover, contrary to a natural intuition, the semi-classical
noise-assisted top is, for a given amount of noise and V = Jx , more likely to be a
stage of the violation of the Leggett–Garg realism.
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We hope that despite simplicity of the considered model, results of the paper enhance
our understanding of what Leggett–Garg realism is and how it can be controlled by
external stochastic driving.
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