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1. Introduction

In the year 1960 Erdös [3] raised the following problem: suppose that a function
f : R → R satisfies the equation

f(x + y) = f(x) + f(y),

for almost all (x, y) ∈ R
2 (in the sense of the planar Lebesque measure).

Does there exists an additive function a : R → R [i.e. a satisfies a(x + y) =
a(x) + a(y), for all (x, y) ∈ R

2] such that

f(x) = a(x)

almost everywhere in R (in the sense of the linear Lebesque measure)? A
positive answer to this question was given by de Bruijn [2] (and, independently,
by Jurkat [9]). N. G. de Bruijn has put the Erdös problem into a more general
setting.

Let (G,+) be a group. A non-empty family I of subsets of G is called a
proper linearly invariant ideal (briefly p.l.i. ideal) iff it satisfies the following
conditions

(i) G �∈ I;
(ii) if U ∈ I and V ⊂ U , then V ∈ I;
(iii) if U, V ∈ I, then U ∪ V ∈ I;
(iv) if U ∈ I and x ∈ G, then x − U ∈ I.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00010-015-0365-z&domain=pdf
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For a p.l.i. ideal I of subsets of a group G we say that a given condition is
satisfied I-almost everywhere in G (written I-a.e.) iff there exists a set Z ∈ I
such that this condition is satisfied for every x ∈ G\Z.

The set belonging to the set ideal are regarded as, in a certain sense, small
sets (see Kuczma [10]). For example, if G is a second category topological
commutative group then the family of all first category subsets of G is a p.l.i.
ideal. If G is a commutative locally compact topological group equipped with
the Haar measure μ then the family of all subsets of G which have zero measure
is a p.l.i. ideal. Moreover, if G is a normed space (dim G ≥ 1) then the family
of all bounded subsets of G is a p.l.i. ideal and also, if G is a commutative
uncountable group then the family of all countable subsets of G is a p.l.i. ideal.

Let (G,+) be a commutative group. For a p.l.i. ideal I we may define the
following family of subsets of G × G (Ger [5,6]):

Ω(I) = {N ⊂ G × G : N [x] ∈ I I-a.e. in G} ,

where

N [x] = {y ∈ G : (x, y) ∈ N}
a subset N of G × G belongs to Ω(I) iff there exists a set U ∈ I such that

N [x] ∈ I, x ∈ G\U

(an abstract version of the Fubini theorem)]. The family Ω(I) is a p.l.i. ideal
of subsets of G × G.

The de Bruijn result can be formulated as follows:

Theorem 1.1. If (G,+) and (H,+) are commutative groups, I is a p.l.i. ideal
of subsets of G then for every Ω(I)-almost additive function f : G → H, i.e.

f(x + y) = f(x) + f(y) Ω(I)-a.e. in G × G,

there exists a unique homomorphism a : G → H such that

f(x) = a(x) I-a.e. in G.

Ger [7] generalized de Bruijn’s theorem to the case of non-commutative
groups. The notion of p.l.i. ideals and its properties and applications we can
find in [10]. One of the most interesting applications is included in the paper
of Ger [8] where the author combines the notions of approximately additive
and almost additive mappings.

In this paper we proved the following version of the Hahn–Banach extension
theorem.

Theorem 1.2. Let (H,+) be a subgroup of a commutative group (G,+), let I
be a p.l.i. ideal of subsets of G and let H �∈ I. Assume that p : G → R satisfies

p(x + y) ≤ p(x) + p(y) Ω(I)-a.e. in G × G. (1.1)
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Then for every additive function a : H → R fulfilling

a(x) ≤ p(x) I-a.e. in H (1.2)

there exists an additive function A : G → R such that

A(x) = a(x) I-a.e. in H. (1.3)

and
A(x) ≤ p(x) I-a.e. in G. (1.4)

2. Proof of the theorem

Assume that I is a p.l.i. ideal of subsets of a commutative group (G,+). For
a real function f on G we define If to be the family of all sets Z ∈ I such
that f is bounded on the complement of Z. A real function f on G is called
I-essentially bounded if and only if the family If is non-empty. The space of
all I-essentially bounded functions on G will be denoted by BI(R,R).

For every element f of the space BI(G,R) the real numbers

I-essinfx∈Gf(x) = sup
Z∈If

inf
x∈G\Z

f(x),

I-esssupx∈Gf(x) = inf
Z∈If

sup
x∈G\Z

f(x)

are correctly defined and are referred to as the I-essential infimum and the
I-essential supremum of the function f , respectively.

From the Gajda theorem (Gajda [4], see also Badora [1]) we can derive the
following.

Theorem 2.1. If I is a p.l.i. ideal of subsets of a commutative group (G,+),
then there exists a real linear functional MI on the space BI(G,R) such that

I-essinfx∈Gf(x) ≤ MI(f) ≤ I-esssupx∈Gf(x) (2.1)

and
MI(zf) = MI(f), (2.2)

for all f ∈ BI(G,R) and all z ∈ G, where the function zf : G → R is defined
as follows

zf(x) = f(z + x), x ∈ G.

Now we prove our result.

Proof of Theorem 1.2. Notice that if I is a p.l.i. ideal of subsets of G, then
the family

I ∩ H = {Z ∩ H : Z ∈ I}
is a p.l.i. ideal of subsets of H.
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From condition (1.1) we infer the existence of the set U1 ∈ I such that for
every x ∈ G\U1 there exists a set Vx ∈ I such that

p(x + y) ≤ p(x) + p(y), g ∈ G\Vx. (2.3)

From (1.2) it follows that there exists a set U0 ∈ I such that

a(x) ≤ p(x), x ∈ H\U0. (2.4)

Let U = U1 ∪ (−U1). Next we choose arbitrary x ∈ G\U . By (2.4) and (2.3)
we get

a(z) ≤ p(z) = p(x − x + z) ≤ p(x) + p(−x + z), (2.5)

for all z ∈ H\(U ∪U0 ∪ (x+Vx)). From (iv) with x = 0 we get −Vx ∈ I. Using
again (iv) we infer that x + Vx ∈ I. Moreover U ∈ I. Therefore (2.5) means
that the function

H 
 z �→ a(z) − p(−x + z) ∈ R

is I-essentially bounded from above. So, we can define the function ϕ : G → R

as follows

ϕ(x) =
{I-esssupz∈H(a(z) − p(−x + z)), x ∈ G\U

0, x ∈ U.

Let N = (U ×G)∪ (G×U)∪{(x, y) ∈ G×G : x+ y ∈ U}. For every x ∈ G\U
we have

N [x] = ∅ ∪ U ∪ {y ∈ G : x + y ∈ U}
= U ∪ {y ∈ G : y ∈ −x + U} = U ∪ (−x + U) ∈ I.

Consequently N ∈ Ω(I).
Let (x, y) ∈ G × G\N be fixed. Then x �∈ U , y �∈ U and x + y �∈ U . For

z ∈ G\((y + V−x) ∪ (x + y + Vx)), by (2.3), we have

p(−x − y + z) ≤ p(−x) + p(−y + z)

and

p(−y + z) = p(x − x − y + z) ≤ p(x) + p(−x − y + z)

which leads to the following

−p(−x) ≤ p(−y + z) − p(−x − y + z) ≤ p(x).

From this we get

ϕ(x + y) = I-esssupz∈H(a(z) − p(−y − x + z))
= I-esssupz∈H(a(z) − p(−y + z) + p(−y + z) − p(−x − y + z))
≤ ϕ(y) + p(x)

and
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ϕ(y) = I-esssupz∈H(a(z) − p(−y + z))
= I-esssupz∈H(a(z) − p(−x − y + z) + p(−x − y + z) − p(−y + z))
≤ ϕ(x + y) + p(−x).

Hence

− p(−x) ≤ ϕ(x + y) − ϕ(y) ≤ p(x), (x, y) ∈ G × G\N. (2.6)

The last inequalities imply that, for x ∈ G\U , the function

G\(U ∪ (−x + U)) 
 y �→ ϕ(x + y) − ϕ(y) ∈ R

is bounded which yields that the function

G 
 y �→ ϕ(x + y) − ϕ(y) ∈ R

belongs to the space BI(G,R).
A function α : G → R we define by the formula

α(x) =
{

MI
y (ϕ(x + y) − ϕ(y)), x ∈ G\U

0, x ∈ U,

where MI is a linear functional whose existence guarantees Theorem 2.1 and
the subscript y indicates that the functional MI is applied to a function of
the variable y.

If we choose (x, y) ∈ G × G\N then, by the linearity of MI and (2.2), we
get

α(x) + α(y) = MI
z (ϕ(x + z) − ϕ(z)) + MI

z (ϕ(y + z) − ϕ(z))

= MI
z (ϕ(x + y + z) − ϕ(y + z)) + MI

z (ϕ(y + z) − ϕ(z))

= MI
z (ϕ(x + y + z) − ϕ(z)) = α(x + y).

The function α is Ω(I)-almost additive and from Theorem 1.1 we obtain the
existence of an additive function A : G → R such that

A(x) = α(x) I-a.e. in G. (2.7)

Next, let x ∈ H\U be fixed and let y ∈ G\(U ∪ (−x + U) ∪ N [x]). Then

ϕ(x + y) = I-esssupz∈H(a(z) − p(−y − x + z))
= inf

Z∈I
sup

z∈H\Z
(a(z) − p(−y − x + z))

= inf
Z∈I

sup
z∈H\(−x+Z)

(a(x + z) − p(−y + z))

= inf
Z∈I

sup
z∈H\(−x+Z)

(a(x) + a(z) − p(−y + z))

= a(x) + ϕ(y).

Therefore, for x ∈ H\U , using (2.1) we have

α(x) = MI
y (ϕ(x + y) − ϕ(y)) = MI

y (a(x)) = a(x),
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which jointly with (2.7) gives (1.3) . Finally, from the definition of α, (2.1), (2.6)
and (2.7) we infer that condition (1.4) is satisfied which ends the
proof. �

3. Ending comments

Remark 3.1. Note that we can strengthen Theorem 1.2 assuming that the
function a is I-almost additive. Then we start the proof from Theorem 1.1.

Remark 3.2. If, in Theorem 1.2, additionally we assume that the functional p
is positively homogeneous then we can prove that the function A is linear.

Indeed, for a fixed x ∈ G let us observe that condition (1.4) implies that

A(tx) ≤ p(tx) = tp(x), t ∈ (0,+∞),

which means that the real additive function

R 
 t �→ A(tx) ∈ R

is bounded from above, for example, on the interval (0, 1). Whence this function
is linear (continuous), i. e.

A(tx) = t · cx, t ∈ R,

for some constant cx ∈ R. Putting t = 1 we get cx = A(x) and

A(tx) = tA(x), t ∈ R.

Hence A is a linear map.

Remark 3.3. We will show that the assumption (iv) imposed on the family I
(symmetry with respect to zero) is essential in our theorem.

Let G = R and let H = Z. The family I of subsets of R we define as follows:
A ∈ I iff A is a countable subset of the interval (c,+∞), for some c ∈ R.

Then H �∈ I, the family I satisfies conditions (i)–(iii) of the definition of a
p.l.i. ideal [but the condition (iv) is not fulfilled].

Taking p : R → R as p(x) =| x |, for x ∈ R, and a : Z → Z as a(x) = 2x, for
x ∈ Z, we have that p satisfies (1.1) and a, p fulfill (1.2) [because Z∩(0,+∞) ∈
I].

If A : R → R is an additive function satisfying (1.4), then it is bounded from
above on some interval (p is bounded from above on each bounded interval).
Therefore A is a linear map. So, A(x) = cx, x ∈ R, for some constant c ∈ R.
Moreover Z �∈ I and if the function A fulfills (1.3), then A(x) = 2x, for x ∈ R,
which is impossible because A, p satisfy (1.4) and (0,+∞) �∈ I.
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