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Abstract In the spirit of some earlier studies of Jean Dhombres, Roman Ger and
Ludwig Reich we discuss the alienation problem for quadratic and multiplicative
mappings.
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1 Introduction

Assume that P and R are arbitrary rings and f : P → R. Mapping f is called additive
if it satisfies the additive Cauchy functional equation:

f (x + y) = f (x) + f (y), x, y ∈ P.

Next, f is called multiplicative if it satisfies the multiplicative Cauchy functional
equation:

f (xy) = f (x) f (y), x, y ∈ P.
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384 W. Fechner

Further, f is said to be quadratic if it satisfies the Jordan-von Neumann functional
equation:

f (x + y) + f (x − y) = 2 f (x) + 2 f (y), x, y ∈ P.

Mappings which are simultaneously additive and multiplicative (in what follows we
will call it briefly additive-multiplicative) are simply ring homomorphisms. One may
ask about the connection between quadratic-multiplicative mappings and ring homo-
morphisms. First result in this direction for real-to-real functions is due to Hammer
and Volkmann [7]:

Theorem A (C. Hammer, P. Volkmann) Assume that f is real-to-real mapping. Then
f is quadratic-multiplicative if and only if it can be written as

f (x) = (�w(x))2 + (�w(x))2 = |w(x)|2,

with additive-multiplicative w : C → C.

A generalization of this theorem is due to Gajda [2]. If R is a field then we denote
by R the algebraic closure of R and if ζ ∈ R then R(ζ ) stands for the smallest field
containing R ∪ {ζ }.
Theorem B (Z. Gajda) Assume that P is a commutative unitary ring and R is a field
with characteristic different from 2. A mapping f : P → R is quadratic-multiplicative
if and only if it can be represented in the form

f (x) = u(x) · v(x), (1)

where both u : P → R(ζ ) and v : P → R(ζ ) are additive-multiplicative mappings
such that

u(x) + v(x) ∈ R, u(x) − v(x) ∈ ζ R, (2)

where ζ ∈ R is an element which satisfies ζ 2 ∈ R.

In 1988 Dhombres [1] studied relations between a system of equations defining
ring homomorphisms:

{
f (x + y) = f (x) + f (y),

f (xy) = f (x) f (y),
(3)

a single functional equation which is a sum of this system:

f (x + y) + f (xy) = f (x) + f (y) + f (x) f (y), (4)

and a more general equation:

a f (xy) + b f (x) f (y) + c f (x + y) + d( f (x) + f (y)) = 0, (5)
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A characterization of quadratic-multiplicative mappings 385

for mapping f defined on a unitary ring which is divisible by 2 and having
values in a field. In particular Dhombres provided sufficient conditions under
which each solution of (4) is a ring homomorphism. Later this results has been
developed and generalized in a few directions by Ger [3–5], Ger and Reich [6],
Laohakosol, Pimsert and Udomkavanich [9], among others. The term “alienation phe-
nomenon” was introduced in order to characterize the effect that each solution of a
single equation satisfies the corresponding system of equations.

The purpose of the present paper is to obtain analogues of the above-mentioned
results for quadratic-multiplicative mappings defined on a commutative unitary ring
uniquely divisible by 2 and having values in a commutative ring with no zero divisors.

2 Main results

Theorem 1 Assume that P is a commutative unitary ring uniquely divisible by 2, R is
a commutative ring with no zero divisors and a, b, c, d, k ∈ R are arbitrary elements.
If a given mapping f : P → R fulfills the following functional equation:

a f (xy) + b f (x) f (y) + c f (x + y) + d f (x − y) + k( f (x) + f (y)) = 0, (6)

for each x, y ∈ P then either:

(a) f = 0 on P; or
(b) f is constant and equal to a non zero solution t of equation

bt = −a − c − d − 2k

over the ring R; or
(c) d = 0 and c = −k − b f (0); or
(d) c = d �= 0, k = −2c − b f (0) and f is even.

Proof If f is constant and equal to some t ∈ R then obviously t = 0 or, since R has
no zero divisors,

a + bt + c + d + 2k = 0.

Assume that f is nonconstant on P . First, let us consider the case where f (0) = 0.
If d = 0 then (6) reduces to (5) and we may apply a result of Dhombres [1, Thm 11]

which implies that c = −k.
Therefore, let us assume that d �= 0. Replace x by y and simultaneously y by x in

(6) to get

a f (yx) + b f (y) f (x) + c f (y + x) + d f (y − x) + k( f (y) + f (x)) = 0

for each x, y ∈ P . Compare this with (6) and use the commutativity of P and R to
arrive at:

d f (x − y) = d f (y − x)
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386 W. Fechner

for each x, y ∈ P . Therefore, since R contains no zero divisors, then f (x − y) =
f (y − x) for each x, y ∈ P , i.e. f is even.

Set x = 0 in (6) to obtain

c f (y) + d f (−y) + k f (y) = 0

for every y ∈ P . Since f �= 0 then we deduce the equality c + d + k = 0.
Put −y instead of y in (6) and use the evenness of f to see that

a f (xy) + b f (x) f (y) + c f (x − y) + d f (x + y) + k( f (x) + f (y)) = 0,

for each x, y ∈ P . Compare this with (6) to derive the equality

(c − d)[ f (x + y) − f (x − y)] = 0, (7)

for each x, y ∈ P . Now, since f is nonconstant we may take u, v ∈ P such that
f (u) �= f (v). Next, make use of the fact that P is uniquely divisible by 2 and apply
(7) with substitutions x = (u + v)/2, y = (u − v)/2 to arrive at

(c−d) [ f (u) − f (v)]=(c−d)

[
f

(
u + v

2
+ u − v

2

)
− f

(
u + v

2
− u − v

2

)]
=0.

From this equality and from the fact that R contains no zero divisors we deduce that
c − d = 0.

Next, we will drop the assumption f (0) = 0. To do this substitute g(x) : = f (x)−
f (0) in (6) to see that

ag(xy) + bg(x)g(y) + cg(x + y) + dg(x − y) + k′(g(x) + g(y)) + A = 0,

for each x, y ∈ P , where

k′ = k + b f (0)

and

A = a f (0) + b f (0)2 + c f (0) + d f (0) + 2k f (0).

On the other hand, it is straightforward to check that A = 0 (substitute x = y = 0 in
(6)). Therefore, we may apply the previous reasonings for the map g and for constants
a, b, c, d and k′ to derive assertions postulated in points (c) and (d).

The case (c) in the foregoing theorem has been thoroughly discussed in the liter-
ature (see Introduction). Therefore, in what follows we will confine ourselves to the
case (d). Moreover, as it was shown in the last part of the proof of Theorem 1, we may
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additionally assume without loss of generality that f (0) = 0. In this situation, Eq. (6)
reduces to:

a f (xy) + b f (x) f (y) + c f (x + y) + c f (x − y) − 2c( f (x) + f (y)) = 0, (8)

for each x, y ∈ P and c �= 0.
In our next step, we embed ring R in its field of fractions. Therefore, we may think

of Eq. (8) as an equation over the field. This is made with the purpose of facilitate some
calculations in the target space and the necessary conditions on the solutions hold also
true after the embedding. Hence all our consecutive statements have consequences
also for solutions with values in a ring.

First let us deal with the case a �= 0 and b �= 0. Replace f by −ab−1 f and multiply
the resulted equation by −a−2b to arrive at

f (xy) − f (x) f (y) = ω[2 f (x) + 2 f (y) − f (x + y) − f (x − y)], (9)

for each x, y ∈ P , where ω = −a−1c.

Theorem 2 Assume that P is a commutative unitary ring uniquely divisible by 2 and
divisible by 3, R is a field and ω ∈ R is an arbitrary nonzero element. If a given
mapping f : P → R such that f (0) = 0 fulfills Eq. (9) for each x, y ∈ P then f is a
quadratic-multiplicative mapping.

Proof By Theorem 1 f is even (a direct proof of this fact is also possible: it suffices
to interchange the roles of variables x, y in (9) and subtract the resulted equation
from (9)).

In what follows we are going to apply the technique of “duplication” for-
mulas and “triplication” formulas, which already has been applied several times
to analogous problems in previous papers on the topic, e.g. Ger [3,4], Ger and
Reich [6].

For the sake of brevity let us denote α = f (1) and β = f (2). Substitute y = 1 in
(9) to obtain

f (x + 1) + f (x − 1) = γ f (x) + 2α, (10)

for every x ∈ P , where γ = 2 − (1 − α)ω−1. Next, put y = 2 in (9) to deduce the
equality

f (2x) = (2ω + β) f (x) + 2ωβ − ω[ f (x + 2) + f (x − 2)], (11)

for every x ∈ P . This jointly with (10) leads to the following “duplication formulae”:

f (2x) = (4ω + β) f (x) + 2ωβ − ω[ f (x + 2) + f (x) + f (x) + f (x − 2)]
= (4ω + β) f (x) + 2ωβ − ω[γ f (x + 1) + 2α + γ f (x − 1) + 2α]
= (4ω + β) f (x) + 2ω(β − 2α) − ωγ [γ f (x) + 2α]
= λ f (x) + χ,
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for every x ∈ P , where λ = 4ω + β − ωγ 2 and χ = 2ω(β − 2α − γα). Note that
since f (0) = 0 then χ = 0. Consequently, β = (2 + γ )α and the foregoing formula
reduces to

f (2x) = λ f (x) (12)

for every x ∈ P . Apply this for x = 1 to see that β = λα, which implies that either
α = β = 0 or λ = 2 + γ . But if α = β = 0 then one may check that we have
γ = 2 − ω−1 and also

λ = (4 − (2 − ω−1)2)ω = 4 − ω−1 = 2 + γ.

This equality after some straightforward calculations leads to the following identity:

(β − 4α)ω = α(α − 1). (13)

Let us firstly deal with the case λ = 0. Clearly f (2x) = 0 for every x ∈ P . Since
P is uniquely divisible by 2 then f = 0 on P .

Now, let us consider the case λ = 1. Replace y by 2y in (9) to deduce the equality:

ω[2 f (x) + 2 f (y) − f (x + 2y) − f (x − 2y)]
= f (2xy) − f (x) f (2y) = f (xy) − f (x) f (y)

= ω[2 f (x) + 2 f (y) − f (x + y) − f (x − y)],

for each x, y ∈ P . Applying the facts that f is even and λ = 1 we get the following
equation:

f (x + 2y) + f (x − 2y) = f (x + y) + f (x − y),

for each x, y ∈ P . Put y = x to see that f (3x) = 0 for every x ∈ P . Taking the
advantage of the fact that P is divisible by 3 we eventually deduce the equality f = 0
on P .

Now, assume that λ �= 0 and λ �= 1. Substitute x : = 2x and y: = 2y in (9) and
apply “duplication formulae” (12) to obtain

λ2 f (xy) − λ2 f (x) f (y) = ωλ[2 f (x) + 2 f (y) − f (x + y) − f (x − y)],

for each x, y ∈ P . Next, compare this equality with (9) to arrive at

f (xy) − f (x) f (y) = 0, (14)

for each x, y ∈ P , i.e. f is multiplicative. This immediately implies that f is also a
quadratic mapping and proves point (a) of the assertion.

Let us note the following corollary, which is a consequence of our Theorem 1 and
Theorem B of Z. Gajda.
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Corollary 1 Assume that P is a commutative unitary ring uniquely divisible by 2 and
divisible by 3, R is a field with characteristic 0 and ω ∈ R is an arbitrary nonzero
element. A given mapping f : P → R such that f (0) = 0 fulfills Eq. (9) for each
x, y ∈ P if and only if there exist a number ζ ∈ R such that ζ 2 ∈ R, additive-
multiplicative mappings u : P → R(ζ ) and v : P → R(ζ ) such that equalities (1)
and (2) hold true.

Next, let us deal with the case a �= 0 and b = 0 in Eq. (8). Multiplication of both
sides of this equation by a−1 gives us

f (xy) = ω[2 f (x) + 2 f (y) − f (x + y) − f (x − y)], (15)

for each x, y ∈ P , with ω = a−1c.

Theorem 3 Assume that P is a commutative unitary ring uniquely divisible by 2 and
divisible by 3, R is a field and ω ∈ R is an arbitrary nonzero element. If a given
mapping f : P → R such that f (0) = 0 fulfills Eq. (15) for each x, y ∈ P then
f = 0.

Proof Apply Theorem 1 to deduce that f is even (or alternatively, it is enough to
interchange the roles of variables x, y in (15) and subtract the resulted equation from
(15)).

Next, denote α = f (1) and β = f (2) and put y = 1 in (15) to get the equality

f (x + 1) + f (x − 1) = 2ω − 1

ω
f (x) + 2α, (16)

for every x ∈ P . Next, substitute y = 2 in (15) and apply (16) to obtain the following
“duplication formulae”:

f (2x) = ω[2 f (x) + 2β − f (x + 2) − f (x − 2)]
= 4ω f (x) + 2ωβ − ω[ f (x + 2) + f (x) + f (x) + f (x − 2)]
= 4ω f (x) + 2ωβ − 4ωα − (2ω − 1)[ f (x + 1) + f (x − 1)]
= 4ω f (x) + 2ωβ − 4ωα − (2ω − 1)

[
2ω − 1

ω
f (x) + 2α

]

= λ f (x) + χ,

for every x ∈ P , where λ = 4 − ω−1 and χ = 2ω(β − 4α) + 2α. Note that since
f (0) = 0 then χ = 0. Consequently, α = ω(4α − β) and the foregoing formula
reduces to

f (2x) = λ f (x) (17)
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390 W. Fechner

for every x ∈ P . Replace x by 2x and y by 2y in (15). By the “duplication formulae”
(17) we deduce the equality

λ2 f (xy) = f (4xy) = ω[2 f (2x) + 2 f (2y) − f (2x + 2y) − f (2x − 2y)]
= λω[2 f (x) + 2 f (y) − f (x + y) − f (x − y)]
= λ f (xy).

for each x, y ∈ P . Therefore, f = 0 unless λ2 = λ �= 0. But the latter possibility
means that λ = 1 and we may mimic a part of the previous proof. Replace y by 2y in
(15) to obtain:

ω[2 f (x) + 2 f (y) − f (x + 2y) − f (x − 2y)]
= f (2xy) = f (xy) = f (x) f (y)z

= ω[2 f (x) + 2 f (y) − f (x + y) − f (x − y)],

for each x, y ∈ P , which gives us that

f (x + 2y) + f (x − 2y) = f (x + y) + f (x − y),

for each x, y ∈ P . Put y = x to see that f (3x) = 0 for every x ∈ P and due to the
fact that P is divisible by 3 we obtain f = 0 on P , as claimed.

Last interesting for us case of (8) is a = 0 and b �= 0. Here we may replace f
by b−1c f and multiply the resulted equation by bc−2 to get the following functional
equation:

f (x) f (y) = 2 f (x) + 2 f (y) − f (x + y) − f (x − y), (18)

for each x, y ∈ P .

Theorem 4 Assume that P is a commutative unitary ring and R is a field with char-
acteristic different from 2. If a given map f : P → R such that f (0) = 0 fulfills
Eq. (18) for each x, y ∈ P then a mapping g : P → R given by g(x) = 1 − 1

2 f (x)

for every x ∈ P solves the d’Alembert functional equation

2g(x)g(y) = g(x + y) + g(x − y), (19)

for each x, y ∈ P.

Proof Define the function g : P → R as in the statement of this theorem. A straight-
forward calculation shows that Eq. (18) after inserting f = 2 − 2g is transformed
into:

4g(x)g(y) = 2g(x + y) + 2g(x − y), (20)

for each x, y ∈ P .
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We may apply the foregoing theorem together with a result of Pl. Kannappan [8]
describing solutions of the d’Alembert functional equation. He proved that if (G,+)

is a group (not necessary Abelian), R is a field with characteristic different from 2 and
g : G → R is a solution of the d’Alembert functional Eq. (19) then there exists an
exponential mapping m : G → R, i.e. a solution of the exponential Cauchy functional
equation:

m(x + y) = m(x)m(y), x, y ∈ G,

such that

g(x) = m(x) + m(−x)

2
, x ∈ G.

Therefore, we obtain the following corollary.

Corollary 2 Assume that P is a commutative unitary ring and R is a field with char-
acteristic different from 2. If a given mapping f : P → R such that f (0) = 0 fulfills
Eq. (18) for each x, y ∈ P then there exists an exponential mapping m : P → R
such that

f (x) = 2 − m(x) − m(−x), x ∈ P.

Now, let us summarize Theorems 1, 2, 3 and 4 in a single corollary, which is in a
sense complementary to a result of Dhombres [1, Thm 11].

Corollary 3 Assume that P is a commutative unitary ring uniquely divisible by 2 and
divisible by 3, R is a field with characteristic different from 2 and a, b, c, d, k ∈ R
are arbitrary elements such that d �= 0. If a given mapping f : P → R fulfills Eq. (6)
for each x, y ∈ P then:

(i) if a �= 0 and b �= 0 then c = d, k = −2d − b f (0) and the mapping q =
− b

a f + b
a f (0) is quadratic-multiplicative;

(ii) if a �= 0 and b = 0 then c = d, k = −2d and f is constant and equal to zero if
a �= 2d or to an arbitrary constant if a = 2d;

(iii) if a = 0 and b �= 0 then c = d, k = −2d − b f (0) and the mapping g =
− b

2d f + 1 + b
2d f (0) solves the d’Alembert functional equation;

(iv) if a = 0 and b = 0 then c = d, k = −2d and the mapping f is quadratic.

Conversely, each of the mappings described in points (i)–(iv) above provides a solution
of Eq. (6).

Remark 1 It may be tempting to solve the following equation:

a f (xy) + b f (x) f (y) + c f (x + y) + d f (x − y) + k f (x) + l f (y) = 0, (21)

which is more general than (6), with arbitrary a, b, c, d, k, l ∈ R. This functional
equation provide a joint generalization of (6) (k = l) and of a general equation dis-
cussed the paper [6] (d = 0). However, we will show that one cannot expected an
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elegant behavior of (21), which is characteristic for Eq. (5). From the results quoted
in the Sect. 1 and concerning Eq. (5) it follows that for each nontrivial solution f
of (5) the following implication holds true: if f solves the equation then automat-
ically the values of the coefficients ab, c, d are uniquely determined (or uniquely
up to a multiplicative constant). To see this it not the case for (21) pick arbitrary
α ∈ R and take a = α, b = −1, c = 1, d = 3, k = −4 and l = 2 and then
a = α, b = −1, c = 1, d = 0, k = l = −1. We see that in both situations the map
f (x) = αx solves (21).

On the other hand, it is possible to provide additional assumptions which imposed
upon f will force that either d = 0 or k = l. For example, it is enough to assume
that f : P → R is a solution of (21) and there exists a y0 ∈ P such that f (y0) =
f (−y0) �= 0. Indeed, it suffices to substitute in (21) x = y0 and y = 0 and then x = 0
and y = y0 to reach equalities

c f (y0) + d f (y0) + k f (y0) = 0,

c f (y0) + d f (−y0) + l f (y0) = 0.

Since f (y0) �= 0 and we keep assuming that R contains no zero divisors then k = l
and thus we reduced (21) to (6).

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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