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A. Wrońska · J. Zejma

Studies of Deuteron Breakup Reactions in
Deuteron–Deuteron Collisions at 160 MeV with BINA
Received: 22 February 2019 / Accepted: 14 May 2019 / Published online: 27 May 2019
© The Author(s) 2019

Abstract A rich set of differential cross section of the three-body 2H(d ,dp)n breakup reaction at 160 MeV
deuteron beam energy has been measured over a large range of the available phase space. The experiment
was performed at KVI in Groningen, the Netherlands, using the BINA detector. The cross-section data for
the breakup reaction have been normalized to the simultaneously measured 2H(d ,d)2H elastic scattering cross
section. The breakup cross sections obtained for 147 kinematically complete configurations near the quasi-
free scattering kinematics are compared to the recent approximate calculations for the three-cluster breakup in
deuteron–deuteron collisions. The cross sections for 294 kinematic configurations of the quasi-free scattering
regime, for which no theoretical calculations exist, are also presented. Besides the three-body breakup, semi-
inclusive energy distributions for the four-body 2H(d ,pp)nn breakup are reported.

1 Introduction

Over the past 10 years, impressive progress has been made towards a numerical solution of the four-nucleon (4N)
scattering problem. The complexity of 4N systems manifests itself in the existence of numerous resonances,
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particularly in the low-energy region, a multitude of entrance and exit channels coupled with various total
isospin states, and breakup thresholds at very low energies. In this respect, the 4N environment constitutes
an auspicious, and because of the recent enormous progress in the calculations [1–8], attractive laboratory to
study few-nucleon interaction models.

In the last 20 years, experimental physicists directed their efforts towards finding the effects of the
three-nucleon force (3NF) in 3N systems [9–11]. In this case the exact calculations are performed with var-
ious so-called high-quality nucleon–nucleon (NN) potentials [12–14] with the use of the Faddeev equations
[15]. They provide an almost perfect description of the NN data, but fail to describe the binding energies
of 3N nuclei. The underbinding for the simplest 3N systems, Triton and 3He, is around 0.8 MeV [16].
Another problem was found in proton–deuteron elastic scattering in the minimum of the differential cross
section [17]. This proves that NN forces are not sufficient to describe even the most basic features of the
3N system. The existence of additional dynamics, 3NF, was proven by comparing precise data for 3N sys-
tems to state-of-the-art calculations. In general, including 3NF in the calculations improves the description
of the cross-section data [10,11,18–26]. However, this claim is not necessarily true for the spin observables
[19,20,24,27–30].

4N systems offer new possibilities to test nuclear interaction models and to learn about the isospin struc-
ture of 3NF [31]. Even more, they reveal extra sensitivity towards NN force models and can help understand
the isospin symmetry of NN P-waves [32,33]. This, in turn, is important for solving the deuteron analyz-
ing power puzzle or the space-star anomaly [9]. In 4N systems a larger sensitivity to the 3NF effects is
expected, allowing the fine-tuning of the 3NF models. However, to get reliable information on the system
dynamics, the experimental data need to be compared with accurate calculations. Such calculations involving
4N are mainly developed by three groups: Pisa [32,34] and Grenoble-Strasbourg [33,35], working in the
coordinate-space representation, and the Lisbon–Vilnius group, using the momentum-space Alt–Grassberger–
Sandhas (AGS) equations [36] for the transition operators [8]. All these methods include the Coulomb
force, but only Lisbon–Vilnius calculates observables for multi-channel reactions above the breakup threshold
[4–7].

Calculations for the d-d system at higher energies currently were feasible and were performed in the
so-called single-scattering approximation (SSA) for the three-cluster breakup and elastic scattering [6]. This
approximation is valid only near quasi-free scattering (QFS) kinematics (at the neutron spectator energy En ∼
0) at high-enough beam energies. A similar approximation was also used for three- and four-cluster breakups
in the heavier system 12C+p [37]. In the calculations three different 2N potentials were used: AV18 [12], CD
Bonn [13] and CD Bonn+Δ [38]. In this approach the interaction was separated into two distinct contributions
[6]. The first one, so-called one-term (1-term) of the single-scattering breakup amplitude, refers to a situation
in which the target deuteron breaks up and only the interaction between the target proton and the deuteron
beam is included. In this case the differential cross-section is peaked at the neutron spectator energy En = 0.
The second one, so-called four term (4-term), refers to the other three SSA contributions related to the case
in which the target proton does not interact (only the target neutron does) and a symmetric situation, but for
the beam proton and beam neutron. These three cases together with the 1-term are assigned to the 4-term
results. In the calculations the Coulomb force, interaction between d-n in dp-QFS and d-p in dn-QFS are
neglected; therefore, the relative energy between d-p should be large enough to minimize the effects of the
final state interactions. To demonstrate the reliability of the SSA calculations for the 4N system, the same kind
of approximation was applied to the p-d breakup [6]. The exact calculations for the 3N breakup were compared
to the ones obtained within SSA. The total p-d breakup cross-section calculated precisely is lower than the one
obtained in SSA by 30% at 95 MeV and by 20% at 200 MeV. As the authors of Ref. [6] conclude, the recent
theoretical predictions should give correct orders of magnitude for total and differential cross-sections for d-d
and p-d breakup (near QFS) and elastic scattering.

With the two deuterons in the initial state, in addition to the simple elastic scattering process, several
reactions with a pure hadronic signature can occur:

1. neutron-transfer: d+d → p+3H,
2. proton-transfer: d+d → n+3He,
3. three-body breakup: d+d → d+p+n,
4. four-body breakup: d+d → p+p+n+n.

The database is scarce for the elastic [39–43], breakup [44–49] and transfer channels [50–52]. In the breakup
sector, the existing data were measured at low energies and only for very selected configurations. The new-
generation data covering a large phase space were measured at KVI at 135 [43,53] and 160 MeV (this paper and
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[54]). The data evaluation was focused on QFS, with the neutron acting as a spectator. The breakup analyzing
power data for the 2H(d,dp)n at 135 MeV were compared with elastic d-p scattering [43,53].

In this article, a set of differential cross section measured at 160 MeV deuteron beam energy for the
three-body breakup is presented. The results obtained for the QFS geometries and their comparison to the
recent SSA calculations [6] were already presented in Ref. [54]. Here, the cross-section integrated over energy
(expressed in variable S) is shown. The database is supplemented with differential cross section for 294
kinematic configurations of the QFS regime, for which no theoretical calculations exist. Moreover, pilot
studies of the four-body breakup 2H(d,pp)nn are presented. In this case, two-dimensional correlations between
the energies of the two protons are compared to the results of simulations.

2 Detector and Experimental Technique

BINA (Big Instrument for Nuclear Polarization Analysis) is a 4π detector which was designed to detect
charged particles produced in reactions with hadrons at medium energies of up to 200 MeV/nucleon. BINA
was installed at Kernfysisch Versneller Instituut (KVI) in Groningen, the Netherlands and operated at the
superconducting cyclotron AGOR (Accelerator Groningen ORsay). The goal of the experiment at 160 MeV
was to measure all the channels discussed above. In the experiment, the deuteron beam of very low current
(about 5 pA) was impinging on a liquid deuterium target. Under such conditions the rate of accidental coin-
cidences was minimized. The detector is divided into two main parts, the forward Wall and the backward
Ball.

The forward Wall is composed of a three-plane Multi-Wire Proportional Chamber (MWPC), to reconstruct
particles trajectories, and an array of ΔE-E telescopes to perform particle identification. The thick stopping
E-detector, is used to measure the energy of particles. The forward Wall covers polar angles, θ , in the range of
10◦–35◦ with the full range of azimuthal angles.

The backward Ball registers charged particles scattered at polar angles in the range of 40◦ to 165◦ with
almost full azimuthal angle coverage. A detailed description of the BINA detection setup is presented in Refs.
[52,55] and in the references cited therein.

3 Data Analysis

The main goal of the data analysis was to obtain a differential cross section for the 2H(d ,dp)n three-body
breakup reaction, with special attention paid to the breakup configurations close to the quasi free scattering.
However, a rich set of the cross sections for non-quasi-free geometries was also obtained and is presented in
this paper. Besides the breakup cross sections, the differential cross section for d-d elastic scattering and the
proton transfer channels were obtained [52]. All the cross-section data have been normalized relative to the
existing data sets collected for the d-d elastic scattering at 180 and 130 MeV [41], see Refs. [52] for details.

The particles of interest (protons, deuterons and 3He-ions) were identified using the ΔE-E technique.
Graphical cuts selecting protons and deuterons were applied to the spectra for each ΔE-E telescope, whereas
in the case of the 3He-ions the so-called linearization method [52,56,57] was used. The breakup channel was
analyzed with the requirement of proton–deuteron coincidences in the Wall. The two-body channels were
identified on the basis of one particle registered in the Wall: the elastically-scattered deuterons or the 3He-ions.
The energy and efficiency calibrations were discussed in details in Refs. [52,54,55]. The energy calibration
has been performed only for the thick, stopping E-detector. The lowest efficiency is related to the detection
of particles in the MWPC. In the case of ΔE and E detectors, the efficiency is close to 100%. Corrections
for losses due to the hadronic interactions inside the scintillator were also taken into account. The losses were
calculated for protons, deuterons and 3He-ions with the use of the GEANT4 framework and the results are
presented in Fig. 1.

To check the GEANT4 simulations, elastic scattering events registered as Wall-Ball coincidences were
used. Based on angular kinematical relations of the elastic scattering process, the events were selected with the
requirement of coplanarity and correct correlation of θ polar angles. The particle identification was not applied
since the events of interest are present in the tail of energy distributions, outside the deuteron identification
cuts. In Fig. 2, the correlation of the energy deposited in the Wall scintillators at a forward angle of θWall = 22◦
(which corresponds to 137 MeV deuteron energy) and in one of the phoswich detectors of the Ball (θBall =
67.5◦) is presented.
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Fig. 1 (Color online) Relative loss of particles due to hadronic interactions in a plastic scintillator determined with using the
GEANT4 Monte Carlo simulation package; the results are presented as a function of initial particle energy. The red dot represents
the similar loss determined on the basis of the energy distribution of deuterons registered in this experiment, as shown in Fig. 2
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Fig. 2 The correlation between energies of particles registered in the Ball and Wall detectors which were selected based on the
angular kinematical relations of the elastic scattering reaction. The peak corresponds to the elastically-scattered deuterons. The
black frame refers to the selection of events used to calculate particle losses due to the hadronic interactions inside the Wall
scintillators

The peak in Fig. 2 corresponds to the elastically-scattered deuterons and the tail stems from such deuterons
undergoing hadronic interaction inside the scintillator. The losses calculated as a ratio of events in the tail to
all events contained within the cut applied to the histogram are around 0.29 (Fig. 2), which agrees with the
value of 0.27 obtained from the simulations.

The acceptance of the Wall for the registration of coincidences is limited by its granularity. When two
particles hit the same slab of the E-detector or a strip of the ΔE-detector, their energies are not properly
reconstructed and, as a consequence, such event is removed from the analysis. To establish the related efficiency
(later referred to as configurational efficiency εcon f ), the dp → ppn breakup data collected with 160 MeV
deuteron beam impinging on the proton target ( [57,58]) were used. The deuteron–proton scattering has two
advantages: i) only two channels are present: elastic scattering and ppn deuteron breakup, and ii) the cross
section at the edges of kinematical curves is quite low. On the contrary, the dpn channel studied in this
work is dominated by the quasi-free process in which the events are usually gathered on the edges of the
kinematical curves (near detection thresholds). In view of the discussion below, this difference is quite crucial
for determining configurational efficiency. The dp → ppn data were analyzed taking into account tracks that
contain exactly two sets of X-Y-U hits in the three MWPC planes matching with a single E-bar (so-called
particular tracks). Such events also include tracks with one particle stopped in ΔE or with a small energy
deposit in the E-detector (below the threshold). To reject such events or minimize their impact, an upper limit
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was set on the energy deposited in ΔE . Based on the ppn breakup, angular information from the MWPC (no
PID available) and energy deposited in the ΔE-detector, the efficiencies were calculated for each geometrical
configuration (θp1, θp2, ϕ12) according to the formula:

εcon f (θp1, θp2, ϕpp) = Nbreak(θp1,θp2,ϕpp)

Nce(θp1,θp2,ϕpp)+Nbreak(θp1,θp2,ϕpp)
, (1)

where Nce(θp1, θp2, ϕpp) denotes the number of p-p coincidences registered as the particular tracks, whereas
Nbreak(θp1, θp2, ϕ12) denotes number of the coincidences for the regular tracks. Nce(θp1, θp2, ϕpp) and
Nbreak(θp1, θp2, ϕpp) represent experimental values obtained by integrating the events over the arclength
S (see Fig. 4). This procedure is also described in greater details in Ref. [54].

The corrections obtained from the data were also compared to the GEANT4 simulations. In the simulations,
the uniform three-body breakup phase-space distribution has been used. The energy thresholds were also
applied, similar to what is observed in the experimental data. The number of breakup coincidences was
calculated and, simultaneously, the fraction of breakup coincidences with two particles registered in the same
E or ΔE-detector, was obtained. In contrast to configurations characterized with the large relative azimuthal
angle ϕdp ≥ 140◦, already discussed in Ref. [54], the ones with lower ϕdp values are more sensitive to efficiency
losses due to overlapping clusters in the MWPC or double hits in the ΔE-strips. The cluster consists of a group
of wires or a single wire that registers a signal in a given event. In the GEANT4 simulations of BINA the
experimental distributions of cluster sizes in the MWPC were implemented, allowing the calculation of losses
of events due to the overlapping clusters. In Fig. 3, examples of εcon f determined on the basis of the data and
the simulations are compared. By means of the simulations, one can investigate all the contributions of the
efficiency separately for E, ΔE , and MWPC.

The ΔE and MWPC components play a role only at the lowest relative azimuthal angles ϕdp, while for the
highest ϕdp only losses due to double hits in theE-detector contribute, see Fig. 3. The configurational efficiency
calculated with the use of the simulations can be considered as purely geometrical. The statistical uncertainties
are within 10%. The data and the simulations agree qualitatively, and usually the differences vary between
2% to 4% for the range of ϕdp above 120◦, and reach up to 15% for several configurations characterized with
the lowest ϕdp. These differences may lie in both: simulations and the experimental data. On one hand the
simulations are rather simplified for not including data digitization and an ideal and realistic modeling of the
detector geometry. On the other hand, the MWPC has its own configurational efficiency, which prevents the
detection of two particles closer than some threshold distance (in each of three planes). Therefore, further
analysis relies on the corrections for the double hits in the E and ΔE obtained directly from the experimental
data and for the double hits in the MWPC based on the simulations.
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Fig. 3 (Color online) Configurational efficiency εcon f for deuteron–proton coincidences calculated for configurations with θd =
18◦, θp = 18◦ from the data (red dots) and from the simulations (empty squares). Separate components of the inefficiency
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4 Cross Section Normalization

The world d-d elastic scattering cross-section data [39–43,51], when presented as a function of four-momentum

transfer q = p CM
d

√
cos θCM

d − 1, reveal very weak energy dependence in a certain range of q. Benefiting
from this, the measured elastic scattering rate at 160 MeV was scaled to the data at two closest energies (130
and 180 MeV) [41] and the normalization factor κ was established [52,54]. Further, κ , corresponding to the
luminosity integrated over the time of the data collection, was used to normalize cross sections for the d+d →
n+3He transfer [52] and breakup [54] reactions.

5 Differential Cross Section of d+d → d+p+n Breakup

The differential three-body breakup cross section was obtained for a set of geometrical configurations, defined
by polar angles of deuteron (θd ) and coincident proton (θp), and their relative azimuthal angle ϕdp.

The kinematical breakup spectra are presented in an Ep-Ed plane (energy of proton versus energy of
deuteron), see Fig. 4, left panel. Two variables were introduced: D denoting the distance of the (Ed , Ep) point
from the relativistic kinematics, and S, which defines the arc-length along the kinematics. The integration
limits of Δθd = Δθp = 2◦ and Δϕdp = 10◦ were used in a grid of θd , θp: 16◦ − 28◦, in steps of 2◦ and ϕdp:
20◦ − 180◦, in steps of 20◦. The events, corrected for efficiencies, were projected onto the D-axis in each bin
of ΔS=4 MeV, see Fig. 4, right panel. To calculate the number of breakup events for a given S-bin, the Gauss
function was fitted to the D-distributions. The background is mostly caused by hadronic interactions in the
scintillator. Since the exact shape of the background is not known and its contribution is low (below 3%), as
the first approximation linear behavior was assumed. To treat all the configurations consistently, the limits in
the D variable were chosen at the values of Da and Db (see Fig. 4, right panel) corresponding to distances of
−3σ and +3σ from the maximum of the fitted peak.

The cross sections for geometries near the quasi-free-scattering (ϕdp: 140◦ − 180◦) are presented in
the article [54]. In this paper, the cross sections for geometries away from the quasi-free-scattering region
ϕdp: 20◦ − 120◦ (non-quasi-free configurations) are introduced. Sample cross-section distributions are pre-
sented for selected configurations in Figs. 5, 6, 7, 8, 9 and 10. The asymmetric systematic errors presented as
red bands in Figs. 5, 6, 7, 8, 9 and 10 originate mostly from the track reconstruction procedure. The asymmetric
errors, calculated for each individual configuration, were estimated based on three data sets obtained separately
for three different methods of the track reconstruction, as was described in [54]. These uncertainties usually
reach up to 7% and the maximum one is around 12%. Besides these uncertainties, other systematic errors (e.g.
from normalization, background subtraction or calibration [54]) are taken into account and contribute to the
bands. The total systematic uncertainty composed of systematic errors added in quadrature vary between 13
and 20%.
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Currently, theoretical predictions are available only for configurations near the QFS region, in the so-called
single-scattering approximation (SSA) for the three-cluster breakup [6], see also Sec. 1. The calculations were
performed using the CD Bonn, AV18 and CD Bonn + Δ potentials in 1- and 4-term versions of the SSA
calculations, see Fig. 11.

In the investigated phase-space region, corresponding to the forward part of the BINA setup, the breakup
channel is dominated by the quasi-free scattering of the deuteron beam on proton from the deuteron target.
The experimental cross sections were integrated over the S arc-length with the analogously treated theoretical
predictions and are presented in Fig. 11. The cross section is strongly peaked in the region of quasi-free
scattering and almost two orders of magnitude smaller for other geometries. The data were compared to the
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available SSA calculations at ϕdp=140◦, 160◦ and 180◦. Among the coplanar geometries, the ones with larger
angles (θp ≥ 24◦ and θd ≥ 24◦) are better described by theory, as expected from SSA. Similar conclusions
can be drawn for other (θp, θd ) configurations, not shown in Fig. 11.

6 Four-Body Breakup d+d → p+p+n+n

The exclusive measurement of the four-body ppnn breakup channel requires the detection of, at least, three
particles. Within the BINA setup, this is very difficult due to the presence of two neutrons in the final state. The
energies and scattering angles of both protons registered in the Wall can be precisely determined; however,
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Fig. 9 Same as in Fig. 5, but for ϕdp = 100◦
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Fig. 10 Same as in Fig. 5, but for ϕdp = 120◦

this is not sufficient. The complete kinematics can be established by measuring, in addition, the energy and
the position of one of the neutrons. This is possible using the asymmetry of the signals registered in two
PMTs (position along E-detector) and/or time-of-flight method (energy) [59]. The efficiency of registering
three particles (ppn) in the Wall is significantly limited by the granularity of the detector. As discussed earlier,
the configurational efficiency for double coincidences is strongly reduced in the case of triple coincidences.
Therefore, semi-inclusive correlations between the energies of the two outgoing protons from the breakup have
been investigated within the Wall acceptance. The correlations were drawn for the coplanar configurations of
the two protons and compared to the results of simulations performed with the use of the Pluto++ event
generator [60], see Fig. 12.
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Fig. 12 (Color online) The correlation between the energies of the two protons in the deuteron–deuteron four-body breakup are
shown for the three coplanar configurations (ϕpp = 180◦) presented in the panels. In the left and center columns, results of the
simulations are shown for ppnn and ppnnspec respectively. In the right column similar correlations, but for the data are presented

An inclusive analysis introduces integration over certain variables; therefore, the Monte Carlo simulations
make important contributions to the interpretation of the data. Due to the lack of theoretical calculations,
the pilot simulations have been performed based on the phase space or on the simplified QFS modeling. By
comparing the data with the simulations one can identify patterns related to QFS or to the dynamics beyond
these assumptions.

In Pluto++ the quasi-free scattering of a nucleon N1 on a nucleus A (or vice versa) is accomplished in two
steps: first, the Fermi-momentum and off-shell mass of the nucleon N1 inside the nucleus A are determined
and the particle properties are set up accordingly, and in a second step the reaction N1+N2 is performed. At
the moment a dedicated sampling model is included for the deuteron wave function [61].
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The simulations have been performed for two cases. Events have been generated according to the uniform
four-body breakup phase-space (ppnn) and, in the second case, using the quasi-free scattering model, with one
of the neutron being a spectator (ppnnspec). Then, the charged particles were tracked through the BINA detector
using the dedicated GEANT4 simulations. In Fig. 12, left and middle columns, results of the simulations
are presented for three different proton-proton coplanar configurations (ϕpp = 180◦): (θp, θp)=(25◦, 17◦),
(29◦, 17◦) and (29◦, 29◦). The distributions were compared to the similar experimental spectra, see Fig. 12,
right column. The experimental distributions reveal that structures (“blobs”), when compared with results
of simulations presented in the middle column, can be interpreted as a contribution of QFS (with the target
neutron as a spectator) and strong p-n final state interaction. Similar structures are also visible in the ppn
breakup measured at the same deuteron beam energy [57,58] and in the same configurations as presented in
Fig. 12.

7 Summary and Outlook

The 2H(d, dp)n breakup reaction was studied with the BINA setup covering a large part of the phase space.
These investigations allow for a systematic analysis of the cross-section data. The database for the three-body
breakup has been significantly enriched with 441 proton–deuteron configurations at 160 MeV deuteron beam
energy. The cross sections have been compared to the calculations based on the single-scattering approximation,
which are applicable only near the QFS region and at higher energies [6]. The calculations are not exact, but
they provide the correct order of magnitude for the cross sections. The cross sections calculated in SSA are
higher than the experimental ones, which are expectedly based on the comparison between the breakup cross
sections calculated in an exact way and the one obtained in SSA. This is also true for the results presented in
this paper.

The development of models involving 4N systems is ongoing; however, exact numerical calculations for
breakup amplitudes are still distant in time given the complexity of the problem. Current experimental efforts
are focused on the further development of the 4N database with the aim of building the testing ground for
future calculations.
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