Skip navigation

Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12128/11804
Title: Ergodyczne własności losowych układów dynamicznych ze skokami o intensywności zależnej od stanu
Authors: Kubieniec, Joanna
Advisor: Horbacz, Katarzyna
Czapla, Dawid
Keywords: układy dynamiczne; równanie Poissona; asymptotyczna stabilność; geometryczna ergodyczność; operatory Markowa
Issue Date: 2019
Publisher: Katowice : Uniwersytet Śląski
Abstract: In this PhD thesis, we analyze the asymptotics of the Markov operator, acting on Borel measures of a Polish space, determining the evolution of a distributions of time- homogeneous Markov chain, which describes the states immediately following the jumps of a certain piecewise-deterministic Markov process. Between any two consecutive jumps, this process evolves deterministically according to one of the semiflows, randomly selected among a finite number of available ones at the moment of jump. The jumps occur in a Poisson-like fashion with state-depentent rate, and each of them is attained by a continuous transformation of the pre-jump state, randomly drawn (with a place-dependent probability) from an arbitrarily given family of all possible ones.
URI: http://hdl.handle.net/20.500.12128/11804
Appears in Collections:Rozprawy doktorskie (WNŚiT)

Files in This Item:
File Description SizeFormat 
Kubieniec_Ergodyczne_wlasnosci_losowych_ukladow_dynamicznych.pdf597,96 kBAdobe PDFView/Open
Show full item record


Items in RE-BUŚ are protected by copyright, with all rights reserved, unless otherwise indicated.