Skip navigation

Please use this identifier to cite or link to this item:
Title: Auxin canalization and vascular tissue formation by TIR1/AFB-mediated auxin signaling in Arabidopsis
Authors: Mazur, Ewa
Kulik, Ivan
Hajny, Jakub
Friml, Jiri
Keywords: Arabidopsis thaliana; auxin; auxin canalization; cell polarity; PIN1; TIR1/ AFB
Issue Date: 22-Jan-2020
Citation: New Phytologist, 22 Jan 2020
Abstract: Plant survival depends on vascular tissues, which originate in a self-organizing manner as strands of cells co-directionally transporting the plant hormone auxin. The latter phenomenon (also known as auxin canalization) is classically hypothesized to be regulated by auxin itself via the effect of this hormone on the polarity of its own intercellular transport. Correlative observations supported this concept, but molecular insights remain limited. In the current study, we established an experimental system based on the model Arabidopsis thaliana, which exhibits auxin transport channels and formation of vasculature strands in response to local auxin application. Our methodology permits the genetic analysis of auxin canalization under controllable experimental conditions. By utilizing this opportunity, we confirmed the dependence of auxin canalization on a PIN-dependent auxin transport and nuclear, TIR1/AFB-mediated auxin signaling. We also show that leaf venation and auxin-mediated PIN repolarization in the root require TIR1/AFB signaling. Further studies based on this experimental system are likely to yield better understanding of the mechanisms underlying auxin transport polarization in other developmental contexts.
DOI: 10.1111/nph.16446
ISSN: 0028-646X
Appears in Collections:Artykuły (WNP)

Files in This Item:
File Description SizeFormat 
Mazur_Auxin_canalization_and_vascular_tissue_formation.pdf2,59 MBAdobe PDFView/Open
Show full item record

Uznanie Autorstwa 3.0 Polska Creative Commons License Creative Commons