Skip navigation

Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12128/358
Title: Mutation in HvCBP20 (Cap binding protein 20) adapts barley to drought stress at phenotypic and transcriptomic levels
Authors: Daszkowska-Golec, Agata
Skubacz, Anna
Marzec, Marek
Słota, Michał
Kurowska, Marzena
Gajecka, Monika
Gajewska, Patrycja
Płociniczak, Tomasz
Sitko, Krzysztof
Pacak, Andrzej
Szweykowska-Kulinska, Zofia
Szarejko, Iwona
Keywords: Abscisic acid; CBP20; Drought; Epidermal pattern; Hordeumvulgare; Photosynthesis; Transcriptome
Issue Date: 2017
Citation: Frontiers in Plant Science, Vol. 8 (2017), no. art. 942
Abstract: CBP20 (Cap-Binding Protein 20) encodes a small subunit of the cap-binding complex (CBC), which is involved in the conserved cell processes related to RNA metabolism in plants and, simultaneously, engaged in the signaling network of drought response, which is dependent on ABA. Here, we report the enhanced tolerance to drought stress of barley mutant in the HvCBP20 gene manifested at the morphological, physiological, and transcriptomic levels. Physiological analyses revealed differences between the hvcbp20.ab mutant and its WT in response to a water deficiency. The mutant exhibited a higher relative water content (RWC), a lower stomatal conductance and changed epidermal pattern compared to the WT after drought stress. Transcriptome analysis using the Agilent Barley Microarray integrated with observed phenotypic traits allowed to conclude that the hvcbp20.ab mutant exhibited better fitness to stress conditions by its much more efficient and earlier activation of stress-preventing mechanisms. The network hubs involved in the adjustment of hvcbp20.ab mutant to the drought conditions were proposed. These results enabled to make a significant progress in understanding the role of CBP20 in the drought stress response.
Description: This work was supported by the European Regional Development Fund through the Innovative Economy for Poland 2007–2013, project WND-POIG.01.03.01-00-101/08 POLAPGEN-BD “Biotechnological tools for breeding cereals with increased resistance to drought,” task 22; National Science Centre, Poland, project SONATA 2015/19/D/NZ9/03573 “Translational genomics approach to identify the mechanisms of CBP20 signalosome in Arabidopsis and barley under drought stress.”
URI: http://hdl.handle.net/20.500.12128/358
DOI: 10.3389/fpls.2017.00942
ISSN: 1664-462X
Appears in Collections:Artykuły (WNP)

Files in This Item:
File Description SizeFormat 
Daszkowska_Golec_Mutation_in_HvCBP20_(cap_binding_protein_20)_adapts_barley_to_drought_stress_at_phenotypic_and_transcriptomic_levels.pdf5,29 MBAdobe PDFView/Open
Show full item record


Uznanie Autorstwa 3.0 Polska Creative Commons License Creative Commons