Skip navigation

Zastosuj identyfikator do podlinkowania lub zacytowania tej pozycji: http://hdl.handle.net/20.500.12128/520
Tytuł: Self-organizing neural networks for modeling robust 3D and 4D QSAR: application to dihydrofolate reductase inhibitors
Autor: Polański, Jarosław
Gieleciak, Rafał
Magdziarz, Tomasz
Słowa kluczowe: 3D QSAR; 4D QSAR; CoMSA; Self-organizing Neural Network; SOM-4D QSAR
Data wydania: 2004
Źródło: Molecules, (2004), iss. 12, p. 1148-1159
Abstrakt: We have used SOM and grid 3D and 4D QSAR schemes for modeling the activity of a series of dihydrofolate reductase inhibitors. Careful analysis of the performance and external predictivities proves that this method can provide an efficient inhibition model.
URI: http://hdl.handle.net/20.500.12128/520
ISSN: 1420-3049
Pojawia się w kolekcji:Artykuły (WMFiCH)

Pliki tej pozycji:
Plik Opis RozmiarFormat 
Polanski_Self-organizing_neural_networks_for_modeling_robust_3D.pdf491,37 kBAdobe PDFPrzejrzyj / Otwórz
Pokaż pełny rekord


Uznanie Autorstwa 3.0 Polska Creative Commons Creative Commons