Skip navigation

Zastosuj identyfikator do podlinkowania lub zacytowania tej pozycji: http://hdl.handle.net/20.500.12128/6673
Pełny rekord metadanych
DC poleWartośćJęzyk
dc.contributor.authorBochenek, Dariusz-
dc.contributor.authorOsińska, Katarzyna-
dc.contributor.authorNiemiec, Przemysław-
dc.contributor.authorAdamczyk, Małgorzata-
dc.contributor.authorGoryczka, Tomasz-
dc.contributor.authorSzych, Rafał-
dc.date.accessioned2018-10-15T06:45:20Z-
dc.date.available2018-10-15T06:45:20Z-
dc.date.issued2018-
dc.identifier.citationArchives of Metallurgy and Materials, Vol. 63, iss. 3 (2018), s. 1401-1409pl_PL
dc.identifier.issn1733-3490-
dc.identifier.urihttp://hdl.handle.net/20.500.12128/6673-
dc.description.abstractIn the work five ceramic compounds based on the (K0.44Na0.52Li0.04)NbO3 (KNLN) material modified with oxides: Cr2O3, ZnO, Sb2O3or Fe2O3 (in an amount of 0.5 mol.%) were obtained. The KNLN-type composition powder was prepared by solid phase synthesis from a mixture of simple oxides and carbonates, while compacted of the ceramic samples was conducted by free sintering methods. In the work the effect of the used admixture on the electrophysical properties of the KNLN ceramics was presented. The XRD, EDS tests, the SEM measurements of the morphology ceramic samples, dielectric properties and DC electric conductivity were conducted. The research showed that the used admixtures introduced into the base of KNLN-type composition improve the microstructure of the ceramic samples and improve their sinterability. In the case of the dielectric measurements, it was observed a decrease in the maximum dielectric permittivity at the TCfor dopred KNLN-type samples. The addition of an admixture of chromium, zinc, antimony or iron in an amount of 0.5 mol.% to the base composition (K0.44Na0.52Li0.04)NbO3 practically does not change the phase transition temperature. The diminution in the density value of doped KNLN ceramics was attributed to the alkali elements volatilization.pl_PL
dc.language.isoenpl_PL
dc.rightsUznanie autorstwa-Użycie niekomercyjne-Bez utworów zależnych 3.0 Polska*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/pl/*
dc.subjectlead free ceramicspl_PL
dc.subjectKNLN ceramicspl_PL
dc.subjectSEM microstructurepl_PL
dc.subjectdielectric testspl_PL
dc.titleTechnology and electrophysical properties of the (K0.44Na0.52Li0.04)NbO3 ceramics doped by Cr3+, Zn2+, Sb3+ or Fe3+pl_PL
dc.typeinfo:eu-repo/semantics/articlepl_PL
dc.relation.journalArchives of Metallurgy and Materialspl_PL
dc.identifier.doi10.24425/123818-
dc.description.references[1] M. Venkata Ramana, S. Roopas Kiran, N. Ramamanohar Reddy, K.V. Siva Kumar, V.R.K. Murthy, B.S. Murty, Investigation and characterization of Pb(Zr0.52Ti0.48)O3 nanocrystalline ferroelectric ceramics: By conventional and microwave sintering methods, Materials Chemistry and Physics 126, 295-300 (2011). [2] R. Skulski, D. Bochenek, P. Wawrzała, G. Dercz, D. Brzezińska, Technology and properties of PBZTS ceramics, International Journal of Applied Ceramic Technology 10, 2, 330-338 (2013). [3] R. Zachariasz, D. Bochenek, Parameters of ceramics obtained on the base PZT used to build electroacoustic converters, Journal de Physique IV 137, 189-192 (2006). [4] R. Zachariasz, D. Bochenek, K. Dziadosz, J. Dudek, J. Ilczuk, Influence of the Nb and Ba dopands on the properties of the PZT type ceramics, Archives of Metallurgy and Materials 56, 4, 1217-1222 (2011). [5] G. Vats, R. Vaish, C.R. Bowen, Selection of Ferroelectric Ceramics for Transducers and Electrical Energy Storage Devices, International Journal of Applied Ceramic Technology 12, S1, E1-E7 (2015). [6] G. Vats, R. Vaish, Piezoelectric material selection for transducers under fuzzy environment, Journal of Advanced Ceramics 2, 2, 141-148 (2013). [7] G. Vats, R. Vaish, Selection of Lead-Free Piezoelectric Ceramics, International Journal of Applied Ceramic Technology 11, 5, 883-893 (2014). [8] G. Vats, R. Vaish, Selection of optimal sintering temperature of K0.5Na0.5NbO3 ceramics for electromechanical applications, Journal of Asian Ceramic Societies 2, 5-10 (2014). [9] G.Z. Zang, X.J. Yi, J. Du, Z.J. Xu, R.Q. Chu, P. Fu, W. Li, Microstructure and electric properties of (Na0.015-xKx)NbO3 lead--free piezoceramics, Journal of Materials Science Materials in Electronics 22, 1282-1285 (2011). [10] R.-A. Eichel, E. Erünal, P. Jakes, S. Körbel, C. Elsässer, H. Kungl, J. Acker, M.J. Hoffmann, Interactions of defect complexes and domain walls in CuO-doped ferroelectric (K,Na)NbO3, Applied Physics Letters 102, 242908 (2013). [11] J. Hreščak, A. Bencan, T. Rojac, B. Malič, The influence of different niobium pentoxide precursors on the solid-state synthesis of potassium sodium niobate, Journal of the European Ceramic Society 33, 3065-3075 (2013). [12] M.R. Bafandeha, R. Gharahkhani, J.-S. Lee, Comparison of sintering behavior and piezoelectric properties of (K,Na)NbO3--based ceramics sintered in conventional and microwave furnace, Materials Chemistry and Physics 143, 1289-1295 (2014). [13] P. Bharathi, K.B.R. Varma, Effect of the Addition of B2O3 on the Density, Microstructure, Dielectric, Piezoelectric and Ferroelectric Properties of K0.5Na0.5NbO3 Ceramics, Journal of Electronic Materials 43, 2, 493-505 (2014). [14] L.A. Ramajo, J. Taub, M.S. Castro, Effect of ZnO Addition on the Structure, Microstructure and Dielectric and Piezoelectric Properties of K0.5Na0.5NbO3 Ceramics, Materials Research 17, 3, 728-733 (2014). [15] P. Bomlai, S. Sukprasert, S. Muensit, S.J. Milne, Phase development, densification and dielectric properties of (0.95-x)Na0.5K0.5NbO3-0.05LiTaO3-xLiSbO3 lead free piezoelectric ceramics, Songklanakarin Journal of Science Education and Technology 30, 6, 791-797 (2008). [16] V.J. Tennery, K.W. Hang, Thermal and X-ray diffraction studies of NaNbO3-NbO3 system, Journal of Applied Physics 39, 4749-4753 (1968). [17] J. Rodel, W. Jo, K.T.P. Seifert, E.M. Anton, T. Graznow, D. Damjanovic, Perspective on the Development of Lead-free Piezoceramics, Journal of the American Ceramic Society 92, 6 1153-1177 (2009). [18] H.M. Rietveld, A profile refinement method for nuclear and magnetic structures, Journal of Applied Crystallography 2, 65-71 (1969). [19] M. Morawiec, A. Grajcar, Some aspects of the determination of retained austenite using the Rietveld refinement, Journal of Achievements in Materials and Manufacturing Engineering 80, 1, 11-17 (2017). [20] R. Rani, S. Sharma, Influence of sintering temperature on densification, structure and microstructure of Li and Sb Co-Modified (K,Na)NbO3-based ceramics, Materials Sciences and Applications 2, 1416-1420 (2011). [21] S. Qian, K. Zhu, X. Pang, J. Wang, J. Liu, J. Qiu, Influence of sintering temperature on electrical properties of (K0.4425Na0.52Li0.0375)(Nb0.8825Sb0.07Ta0.0475)O3 ceramics without phase transition induced by sintering temperature, Journal of Advanced Ceramics 2, 4, 353-359 (2013). [22] R.E. Jaeger, L. Egerton, Hot-pressing of potassium sodium niobates, Journal of the American Ceramic Society 45, 5, 209-213 (1962).pl_PL
Pojawia się w kolekcji:Artykuły (WNŚiT)

Pliki tej pozycji:
Plik Opis RozmiarFormat 
Bochenek_Technology_and_electrophysical_properties_of.pdf5,2 MBAdobe PDFPrzejrzyj / Otwórz
Pokaż prosty rekord


Uznanie autorstwa - użycie niekomercyjne, bez utworów zależnych 3.0 Polska Creative Commons Creative Commons