Skip navigation

Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12128/6924
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBochenek, Dariusz-
dc.contributor.authorNiemiec, Przemysław-
dc.date.accessioned2018-10-31T07:57:59Z-
dc.date.available2018-10-31T07:57:59Z-
dc.date.issued2018-
dc.identifier.citationApplied Physics A, Vol.124 (2018), Art. No. 775pl_PL
dc.identifier.issn0947-8396-
dc.identifier.urihttp://hdl.handle.net/20.500.12128/6924-
dc.description.abstractIn this work, the multicomponent Pb(Zr0.58Ti0.42)O3 ceramics doped by calcium (Ca), sodium (Na), bismuth (Bi) and cadmium (Cd) was designed and obtained by the hot uniaxial pressing method. Comprehensive electrophysical properties including crystalline structure, microstructure, dielectric, electromechanical and piezoelectric of the ceramics were made. The Pb0.92Ca0.02Na0.01Bi0.05(Zr0.58Ti0.42)0.98Cd0.02O3 ceramics obtained by the hot uniaxial pressing method has a microstructure of a regularly crystallized grain. The multicomponent material shows high values of dielectric and piezoelectric properties with high ferroelectric hardness. A wide and rectangular hysteresis loop of the PZT-type ceramics shows high ferroelectric hardness of obtained ceramics. Studies have also shown that multicomponent PZT-type ceramics exhibits a strong S–E behavior. The S–Eelectromechanical loops have characteristic “butterfly wings” shape with high values of mechanical strain. These properties of the obtained material allow its application in the modern microelectronics and micromechatronics, for example, in constructing electromechanical and electroacoustic transducers, piezotransformators, piezoelectric motors, etc.pl_PL
dc.language.isoenpl_PL
dc.publisherSpringerpl_PL
dc.rightsUznanie autorstwa-Użycie niekomercyjne-Bez utworów zależnych 3.0 Polska*
dc.rightsUznanie autorstwa 3.0 Polska*
dc.rightsUznanie autorstwa 3.0 Polska*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/pl/*
dc.subjectPZT type ceramicspl_PL
dc.subjectSEM microstructurepl_PL
dc.subjectdielectric propertiespl_PL
dc.subjectelectromechanical propertiespl_PL
dc.titleMicrostructure and physical properties of the multicomponent PZT-type ceramics doped by calcium, sodium, bismuth and cadmiumpl_PL
dc.typeinfo:eu-repo/semantics/articlepl_PL
dc.relation.journalApplied Physics Apl_PL
dc.identifier.doi10.1007/s00339-018-2203-3-
dc.description.references1. M. Venkata Ramana, S. Roopas Kiran, N. Ramamanohar Reddy, K.V. Siva Kumar, V.R.K. Murthy, B.S. Murty, Mater. Chem. Phys. 126, 295 (2011) 2. H. Schmid, J. Phys. Condens. Matter 20, 434201 (2008) 3. J. Kulawik, D. Szwagierczak, B. Gröger, Bull. Pol. Acad. Tech. 55, 293 (2007) 4. Z. Surowiak, D. Bochenek, Arch. Acoust. 33, 243 (2008) 5. R. Sitko, B. Zawisza, J. Jurczyk, D. Bochenek, M. Płońska, Microchim. Acta 144, 9 (2004) 6. K. Uchino, J.R. Giniewicz, Micromechatronics(Marcel Dekker, Inc., New York, 2003), pp. 103–265 7. H.S. Tzou, H.-J. Lee, S.M. Arnold, Mech. Adv. Mater. Struct. 11, 367 (2004) 8. W. Jo, R. Dittmer, M. Acosta, J. Zang, C. Groh, E. Sapper, K. Wang, J. Rödel, J. Electroceram. 29, 71 (2012) 9. S.-Y. Chu, T.-Y. Chen, I.-Ta Tsai, Walter Water Sens.Actuators A 113, 198 (2004) 10. S.L. Fu, S.Y. Cheng, C.C. Wei, Ferroelectrics 67, 93 (1986) 11. J. Deng, W. Zhu, O.K. Tan, X. Yao, Sens. Actuators B 77, 416 (2001) 12. E. Flint, C. Liang, C.A. Rogers, J. Intell. Mater. Syst. 6, 117 (1995) 13. F.P. Sun, Z. Chandhry, C. Liang, C.A. Rogers, J. Intell. Mater. Syst. 6, 134 (1995) 14. Q. Tan, D. Viehland, J. Am. Ceram. Soc. 81, 328 (1998) 15. K. Onitsuka, A. Dogan, J.F. Tressler, Q. Xu, S. Yoshikawa, R.E. Newnham, J. Intell. Mater. Syst. 6, 447 (1995) 16. Y. Xu, Ferroelectric Materials and Their Applications (Elsevier, Amsterdam, 1991), pp. 104–112 17. B. Noheda, D.E. Cox, G. Shirane, J.A. Gonzalo, L.E. Cross, S.-E. Park, Appl. Phys. Lett. 74, 2059 (1999) 18. B. Noheda, J.A. Gonzalo, L.E. Cross, R. Guo, S.-E. Park, D.E. Cox et al., Phys. Rev. B 61, 8687 (2000) 19. C. Bedoya, Ch Muller, J.-L. Baudour, V. Madigou, M. Anne, M. Roubin, Mater. Sci. Eng. B 75, 43 (2000) 20. B. Jaffe, R.S. Roth, S. Marzullo, J. Res. Natl. Bur. Stand. 55, 239 (1955) 21. M.R. Soares, A.M.R. Senos, P.Q. Mantas, J. Eur. Ceram. Soc. 20, 321 (2000) 22. A. Bouzid, E.M. Bourim, M. Gabbay, G. Fantozzi, J. Eur. Ceram. Soc. 25, 3213 (2005) 23. S.K. Mishra, A.P. Singhi, D. Pandey, Philos. Mag. 76, 213 (1997) 24. R.F. Zhang, H.P. Zhang, J. Ma, Y.Z. Chen, T.S. Zhang, Solid State Ionics 166, 219 (2004) 25. D. Bochenek, P. Niemiec, M. Adamczyk, Z. Machnik, G. Dercz, Eur. Phys. J. B 88, 279 (2015) 26. R. Zachariasz, D. Bochenek, Eur. Phys. J. B 88, 296 (2015) 27. P. Niemiec, R. Skulski, D. Bochenek, P. Wawrzała, Phase Transit. 86, 267 (2013) 28. R. Zachariasz, J. Ilczuk, D. Bochenek, Solid State Phenom. 89, 303 (2003) 29. D. Bochenek, R. Zachariasz, Phase Transit. 88, 799 (2015) 30. K.R.M. Rao, A.V.P. Rao, S. Komarneni, Mater. Lett. 28, 463 (1996) 31. R.F. Zhang, J. Ma, L.B. Kong, Y.Z. Chen, T.S. Zhang, Mater. Lett. 55, 388 (2002) 32. H. Hirashima, E. Onishi, M. Nakagowa, J. Non-Cryst. Solids 121, 404 (1990) 33. T.R.N. Kutty, R. Balachandan, Mater. Res. Bull. 19, 1479 (1984) 34. L.B. Kong, J. Ma, H.T. Huang, W. Zhu, O.K. Tan, Mater. Lett. 50, 129 (2001) 35. A.S. Karapuzha, N.K. James, H. Khanbareh, S. van der Zwaag, W.A. Groen, Ferroelectrics 504, 160 (2016) 36. O. Raymond, R. Font, N. Suárez-Almodovar, J. Portelles, J.M. Siqueiros, J. Appl. Phys. 97, 084107 (2005) 37. L.M. Hrib, O.F. Caltun, J. Alloy. Compd. 509, 6644 (2011) 38. L.B. Kong, J. Ma, Mater. Lett. 51, 95 (2001) 39. X. Yang, J. Zhou, S. Zhang, J. Shen, J. Tian, W. Chen, Q. Zhang, Ceram. Int. 41, 1657 (2015)pl_PL
Appears in Collections:Artykuły (WNŚiT)

Files in This Item:
File Description SizeFormat 
Bochenek_Microstructure_and_physical_properties_of.pdf3,12 MBAdobe PDFView/Open
Show simple item record


Uznanie Autorstwa 3.0 Polska Creative Commons License Creative Commons