Skip navigation

Please use this identifier to cite or link to this item:
Title: The latent meaning of forcing in quantum mechanics
Authors: Klimasara, Paweł
Bielas, Krzysztof
Król, Jerzy
Asselmeyer-Maluga, Torsten
Keywords: mechanika kwantowa; geometria Riemanna
Issue Date: 2016
Citation: Acta Physica Polonica B, Vol. 47, no. 6 (2016), s. 1685-1690
Abstract: We analyze random forcing in QM from the dual perspective of the measure and category correspondence. The dual Cohen forcing allows interpreting the real numbers in a model M and its Cohen extension M[G] as absolute subtrees of the binary tree (Cantor space). The trees are spanning non-trivial Casson handles of smooth exotic 4-manifolds, like R4. We formulate the consequences for the cosmological model with random forcing where dual smooth non-standard and non-flat Riemannian geometries have to appear.
DOI: 10.5506/APhysPolB.47.1685
ISSN: 0587-4254
Appears in Collections:Artykuły (WNŚiT)

Files in This Item:
File Description SizeFormat 
Klimasara_The_latent_meaning_of_forcing.pdf542,66 kBAdobe PDFView/Open
Show full item record

Uznanie Autorstwa 3.0 Polska Creative Commons License Creative Commons