Skip navigation

Please use this identifier to cite or link to this item:
Title: Multiferroic Aurivillius-type Bi6 Fe 2−xMnxTi3O18 (0 ≤ x ≤ 1.5) ceramics with negative dielectric constant
Authors: Bartkowska, Joanna Agnieszka
Bochenek, Dariusz
Niemiec, Przemysław
Keywords: Aurivillius phase; dielectric constant; EDS; microstructure; multiferroics
Issue Date: Dec-2018
Citation: Applied Physics A, Vol. 124 (2018), Art. No. 823
Abstract: Aurivillius-type ceramics Bi6Fe2−xMnxTi3O18 x = 0, 0.3, 0.9, 1.5 were obtained by a solid-state reaction method using high-purity TiO2, Bi2O3, Fe2O3 and Mn2O3 powders. The milled powder was calcined at 1113 K for 4 h. After calcination, the powder was milled again than pressed into pellets and sintered at 1213 K for 4 h. It was detected that the addition of manganese ions to the multiferroic five-layer Aurivillius-type structure affects the size of the grains. It was found that, the certain amount of manganese ions causes that the polarization of the material doped by them, have the direction opposite to the direction of the applied electric field. The doped material behaves like dia-electric material. The presented research complements the research concerning the Aurivillius ceramics doped with manganese. An attempt was made to explain the reasons for the negative values of dielectric constant and dielectric loss, that occur in manganese-doped five-layer Aurivillius type ceramics and which have not been described in the literature so far.
DOI: 10.1007/s00339-018-2247-4
ISSN: 0947-8396
Appears in Collections:Artykuły (WNŚiT)

Files in This Item:
File Description SizeFormat 
Bartkowska_Multiferroic_Aurivillius_type.pdf4,36 MBAdobe PDFView/Open
Show full item record

Uznanie Autorstwa 3.0 Polska Creative Commons License Creative Commons