Skip navigation

Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12128/7333
Title: Method of separating the angularcoordinates in two-body waveequations with spin
Authors: Turski, Andrzej
Keywords: rozwiązywanie równań falowych; stany związane; fizyka teoretyczna
Issue Date: 1986
Citation: Acta Physica Polonica B, Vol. 17, no. 4 (1986), s. 337-346
Abstract: An explicit form of total angular momentum eigenfunctions is found for the physical systems described by one three-dimensional space coordinate and arbitrary spin degrees of freedom. The resulting formula is usefully parametrized by the multicomponent radial wave function. The dependence on the angular coordinates is given by action of generalized spherical harmonics. The formula gives a convenient method of separation of the angular coordinates in an arbitrary one- or two-body wave equation with spin. As an example, the method was applied to the relativistic wave equation for one Dirac and one Duffin-Kemmer particle, proposed recently by Królikowski. A corresponding set of radial equations is derived in the case of spherically symmetrical interaction potentials.
URI: http://hdl.handle.net/20.500.12128/7333
ISSN: 0587-4254
Appears in Collections:Artykuły (WNŚiT)

Files in This Item:
File Description SizeFormat 
Turski_Method_of_separating_the_angular.pdf459,15 kBAdobe PDFView/Open
Show full item record


Uznanie Autorstwa 3.0 Polska Creative Commons License Creative Commons