Skip navigation

Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12128/7484
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBochenek, Dariusz-
dc.contributor.authorNiemiec, Przemysław-
dc.date.accessioned2018-12-17T11:35:28Z-
dc.date.available2018-12-17T11:35:28Z-
dc.date.issued2018-
dc.identifier.citationMaterials, Vol. 11, iss. 12 (2018), article no 2504pl_PL
dc.identifier.issn1996-1944-
dc.identifier.urihttp://hdl.handle.net/20.500.12128/7484-
dc.description.abstractIn the work, PbFe1/2Nb1/2O3 (PFN) ceramic samples synthesized by chemically wet method (precipitation from the solution) were obtained. Due to the tendency to form powder agglomerates, the synthesized powder was subjected to ultrasound. The sintering was carried out under various technological conditions, mainly through controlling the sintering temperature. XRD, SEM, as well as the examinations of dielectric, ferroelectric and magnetic properties of the PFN ceramics were carried out. The studies have shown that hard ceramic agglomerates can be partially minimized by ultrasound. Thanks to this treatment, closed porosity decreases and the ceramic samples have higher a density. Optimization and improvement of the technological process of the PFN material extends the possibility of the use thereof for the preparation of multiferroic composites or multicomponent solid solutions based on PFN. Such materials with functional properties find applications in microelectronic applications, e.g. in systems integrating ferroelectric and magnetic properties in one device. The optimal synthesis conditions of PFN ceramics were determined to be 1050°C/2 h.pl_PL
dc.language.isoenpl_PL
dc.rightsUznanie autorstwa 3.0 Polska*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/pl/*
dc.subjectmultifereroicspl_PL
dc.subjectferroelectromagneticspl_PL
dc.subjectperovskite type materialspl_PL
dc.subjectchemical-wet technologypl_PL
dc.subjectsol-gelpl_PL
dc.titleFerroelectromagnetic properties of the PFN material synthesized by chemical-wet technologypl_PL
dc.typeinfo:eu-repo/semantics/articlepl_PL
dc.relation.journalMaterialspl_PL
dc.identifier.doi10.3390/ma11122504-
dc.description.references1. Das, R.N.; Pramanik, P. Single step chemical synthesis of lead based relaxor ferroelectric niobate fine powders.Nanostruct. Mater. 1999, 11, 323–330. 2. Raymond, O.; Font, R.; Suarez, N.; Portalles, J.; Siqueiros, J.M. Effects of two kinds of FeNbO4 precursors in the obtainment and dielectric properties of PFN ceramics. Ferroelectrics 2003, 294, 141–154. 3. Kozii, V.; Ruhman, J.; Fu, L.; Radzihovsky, L. Ferromagnetic transition in a one-dimensional spin-orbit-coupled metal and its mapping to a critical point in smectic liquid crystals. Phys. Rev. B 2017, 96, 094419. 4. Lente, M.H.; Guerra, J.D.S.; de Souza, G.K.S.; Fraygola, B.M.; Raigoza, C.F.V.; Garcia, D.; Eiras, J.A. Nature of the magnetoelectric coupling in multiferroic Pb(Fe1/2Nb1/2)O 3ceramics. Phys. Rev. B 2008, 78, 054109. 5. Khomskii, D. Classifying multiferroics: Mechanisms and effects. Physics 2009, 2, 20. 6. Wang, K.F.; Liu, J.-M.; Ren, Z.F. Multiferroicity: The coupling between magnetic and polarization orders.Adv. Phys. 2009, 58, 321–448. 7. Schmid, H. Some symmetry aspects of ferroics and single phase multiferroics. J. Phys. Condens. Matter 2008, 20, 434201. 8. Lente, M.H.; Guerra, J.S.; Sousa, G.K.S.; Raigoza, C.F.V.; Garcia, D.; Eiras, J.A. Investigation of magnetoelectric coupling in single-phase multiferroic ceramics. Ferroelectrics 2008, 368, 99–106. 9. Kleemann, W.; Borisov, P.; Shvartsman, V.V.; Bedanta, S. Multiferroic and magnetoelectric materials—Developments and perspectives. EPJ Web Conf. 2012, 29, 00046. 10. Gao, X.S.; Chen, X.Y.; Yin, J.; Wu, J.; Liu, Z.G. Ferroelectric and dielectric properties of ferroelectromagnet Pb(Fe1/2Nb1/2)O3 ceramics and thin films. J. Mater. Sci. 2000, 35, 5421–5425. 11. Vedantam, R.R.; Subramanian, V.; Sivasubramanian, V.; Murthy, V.R.K. Low frequency dielectric studies on Pb(Fe1/2Nb1/2)O3. Mater. Sci. Eng. B 2004, 113, 136–142. 12. Fiebig, M.; Lottermoser, T.; Meier, D.; Trassin, M. The evolution of multiferroics. Nat. Rev. Mater. 2016. 13. Spaldin, N.A. Multiferroics: Past, present, and future. MRS Bull. 2017, 42, 385–390. 14. Christodoulou, L.; Venables, J.D. Multifunctional material systems: The first generation. JOM 2003, 55, 9–45. 15. Allison, J.; Backman, D.; Christodoulou, L. Integrated computational materials engineering: A new paradigm for the global materials profession. JOM 2006, 58, 25–27. 16. Dagdeviren, C.; Joe, P.; Tuzman, O.L.; Park, K.I.; Lee, K.J.; Shi, Y.; Huang, Y.; Rogers, J.A. Recent progress in flexible and stretchable piezoelectric devices for mechanical energy harvesting, sensing and actuation. Extrem. Mech. Lett. 2016, 9, 269–281. 17. Elahi, H.; Eugeni, M.; Gaudenzi, P. A review on mechanisms for piezoelectric-based energy harvesters. Energies 2018, 11, 1850. 18. Gao, X.; Xue, J.; Wang, J. Sequential combination of constituent oxides in the synthesis of Pb(Fe1/2Nb1/2)O3 by mechanical activation. J. Am. Ceram. Soc. 2002, 85, 565–572. 19. Singh, K.; Band, S.A.; Kinge, W.K. Effect of sintering temperature on dielectric properties of Pb(Fe1/2Nb1/2)O3 perovskite material. Ferroelectrics 2004, 306, 179–185.20. Bochenek, D.; Surowiak, Z.; Krok-Kowalski, J.; Poltierova-Vejpravova, J. Influence of the sintering conditions on the physical proprieties of the ceramic PFN multiferroics. J. Electroceram. 2010, 25, 122–129. 21. Majumder, S.B.; Bhattacharyya, S.; Katiyar, R.S.; Manivannan, A.; Dutta, P.; Seehra, M.S. Dielectric and magnetic properties of sol-gel-derived lead iron niobate ceramics. J. Appl. Phys. 2006, 99, 024108. 22. Havlicek, R.; Poltierova-Vejpravova, J.; Bochenek, D. Structure and magnetic properties of perovskite-like multiferroic PbFe0.5Nb0.5O3. J. Phys. Conf. Ser. 2010, 200, 012058. 23. Liou, Y.-C.; Shih, C.-Y.; Yu, C.-H. Pb(Fe1/2Nb1/2)O3 perovskite ceramics produced by simplified wolframite route. Jpn. J. Appl. Phys. 2002, 41, 3829–3831. 24. Bochenek, D. Magnetic and ferroelectric properties of PbFe1/2Nb1/2O3 synthesized by a solution precipitation method. J. Alloy. Compd. 2010, 504, 508–513. 25. Bharti, C.; Dutta, A.; Shannigrahi, S.; Choudhary, S.N.; Thapa, R.K.; Sinha, T.P. Impedance spectroscopy, electronic structure and X-ray photoelectron spectroscopy studies of Pb(Fe1/2Nb1/2)O3. J. Electron Spectrosc. Relat. Phenom. 2009, 169, 80–85. 26. Youmee, P.; Phanichphant, S. Synthesis and Properties of Lead Iron Niobate (PFN). Ceram. Forum Int. 2004,81, E45–E50. 27. Bochenek, D.; Zachariasz, R. Sol-gel method to obtain the ferroelectromagnetic (Pb(Fe0.5Nb0.5)O3) ceramics for micromechatronic aplications. Mater. Werkst. 2015, 46, 294–299. 28. Peng, W.; Lemée, N.; Karkut, M.; Dkhil, B.; Shvartsman, V.V. Spin-lattice coupling in multiferroic Pb(Fe1/2Nb1/2)O3 thin films. Appl. Phys. Lett. 2009, 94, 012509. 29. Peng, W.; Lemée, N.; Holc, J.; Kosec, M.; Blinc, R.; Karkut, M.G. Epitaxial growth and structural characterization of Pb(Fe1/2Nb1/2)O3 thin films. J. Magn. Magn. Mater. 2009, 321, 1754–1757. 30. Tang, J.; Zhu, M.; Zhong, T.; Hou, Y.; Wang, H.; Yan, H. Synthesis of fine Pb(Fe0.5Nb0.5)O3 perovskite powders by coprecipitation method. Mater. Chem. Phys. 2007, 101, 475–479. 31. Bochenek, D.; Surowiak, Z. Applications of iron (III) nitrate to obtain the multiferroic Pb(Fe1/2Nb1/2)O3 ceramics by the sol–gel method. J. Alloy. Compd. 2009, 480, 732–736. 32. Bochenek, D.; Skulski, R.; Niemiec, P.; Brzezi´nska, D.; Rogacki, K. The magnetic and electric measurements of the multiferroic PbFe1/2Nb1/2O3 ceramics obtained using hot uniaxial pressure method. Arch. Metall.Mater. 2018, 63, 1243–1247. 33. Raymond, O.; Font, R.; Portelles, J.; Siqueiros, J.M. Magnetoelectric coupling study in multiferroic Pb(Fe0.5Nb0.5)O3 ceramics through small and large electric signal standard measurements. J. Appl. Phys. 2011, 109, 094106. 34. Laguta, V.V.; Stephanovich, V.A.; Raevski, I.P.; Raevskaya, S.I.; Titov, V.V.; Smotrakov, V.G.; Eremkin, V.V. Magnetoelectric effect in antiferromagnetic multiferroic Pb(Fe1/2Nb1/2)O3 and its solid solutions with PbTiO3 . Phys. Rev. B 2017, 95, 014207. 35. Font, R.; Raymond-Herrera, O.; Mestres, L.; Portelles, J.; Fuentes, J.; Siqueiros, J.M. Improvement of the dielectric and ferroelectric properties of multiferroic Pb(Fe1/2Nb1/2)O3 ceramics processed in oxygen atmosphere. J. Mater. Sci. 2016, 51, 6319–6330. 36. Puri, M.; Bahel, S.; Raevski, I.P.; Narang, S.B. Dielectric and impedance studies of (Pb1-xCax)(Fe0.5Nb0.5)O3 dielectric ceramics. J. Mater. Sci. Mater. Electron. 2016, 27, 1077–1086. 37. Bochenek, D.; Niemiec, P.; Guzdek, P.; Wzorek, M. Magnetoelectric and electric measurements of the (1 x)BiFeO3–(x)Pb(Fe1/2Nb1/2)O3 solid solution. Mater. Chem. Phys. 2017, 195, 199–206. 38. Brzezi´nska, D.; Skulski, R.; Bochenek, D.; Niemiec, P. The properties of (1 x)(0.5PZT-0.5PFW)-xPFN ceramics.Integr. Ferroelectr. 2016, 173, 104–112. 39. Gusev, A.A.; Raevski, I.P.; Avvakumov, E.G.; Isupov, V.P.; Raevskaya, S.I.; Chen, H.; Titov, V.V.; Chou, C.-C.; Kubrin, S.P.; Titov, S.V.; et al. Dielectric properties of undoped and Li-doped Pb(Fe1/2Nb1/2)O3 ceramics sintered from mechanochemically synthesized powders. Ferroelectrics 2015, 475, 61–67. 40. Raevskaya, S.I.; Kubrin, S.P.; Raevski, I.P.; Chou, C.C.; Chen, H.; Titov, V.V.; Malitskaya, M.A.; Sarychev, D.A.; Zakharchenko, I.N. The effect of quenching on semiconductive properties and magnetic phase transition temperature of multiferroic Pb(Fe1/2Nb1/2)O3 ceramics. Ferroelectrics 2017, 509, 64–73. 41. Lv, X.; Liu, G.; Liu, X.Q.; Chen, X.M. Local structure evolution in Ba-substituted Pb(Fe1/2Nb1/2)O3 ceramics. J. Am. Ceram. Soc. 2014, 97, 2880–2884. 42. Bochenek, D.; Niemiec, P.; Chrobak, A.; Ziółkowski, G.; Zachariasz, R. Ferroelectric-ferromagnetic composites of based on Pb(Fe1/2Nb1/2)O3 . Compos. Theory Pract. 2013, 13, 59–64.43. Bochenek, D.; Dudek, J. Influence of the processing conditions on the properties of the biferroic Pb(Fe1/2Nb1/2)O3 ceramics. Eur. Phys. J. Spec. Top. 2008, 154, 19–22. 44. Wójcik, K.; Zieleniec, K.; Milata, M. Electrical Properties of Lead Iron Niobate PFN. Ferroelectrics 2003, 289, 107–120. 45. Bochenek, D.; Niemiec, P.; Korzekwa, J.; Durtka, B.; Stokłosa, Z. Microstructure and properties of the ferroelectric-ferromagnetic PLZT-ferrite composites. Symmetry 2018, 10, 59. 46. Suchet, I.P. Chemie Physicque des Semiconducteurs; Dunod: Paris, France, 1962. 47. Bochenek, D.; Niemiec, P.; Skulski, R.; Adamczyk, M.; Brzezi´nska, D. Electrophysical properties of the multicomponent PBZT-type ceramics doped by Sn4+ . J. Electroceram. 2018. 48. Raymond, O.; Font, R.; Suárez-Almodovar, N.; Portelles, J.; Siqueiros, J.M. Frequency-temperature response of ferroelectromagnetic PbFe1/2Nb1/2O3 ceramics obtained by different precursors. Part I. Structural and thermo-electrical characterization. J. Appl. Phys. 2005, 97, 084107. 49. Bhat, V.V.; Ramanujachary, K.V.; Lofland, S.E.; Umarji, A.M. Tuning the multiferroic properties of Pb(Fe 1/2Nb1/2)O3 by cationic substitution. J. Magn. Magn. Mater. 2004, 280, 221–226.pl_PL
Appears in Collections:Artykuły (WNŚiT)

Files in This Item:
File Description SizeFormat 
Bochenek_Ferroelectromagnetic_properties_of_the_PFN.pdf4,24 MBAdobe PDFView/Open
Show simple item record


Uznanie Autorstwa 3.0 Polska Creative Commons License Creative Commons