Skip navigation

Zastosuj identyfikator do podlinkowania lub zacytowania tej pozycji: http://hdl.handle.net/20.500.12128/8313
Pełny rekord metadanych
DC poleWartośćJęzyk
dc.contributor.authorMatlak, Michał-
dc.contributor.authorGrabiec, B.-
dc.contributor.authorKrawiec, S.-
dc.date.accessioned2019-02-27T07:21:46Z-
dc.date.available2019-02-27T07:21:46Z-
dc.date.issued2007-
dc.identifier.citationActa Physica Polonica A, Vol. 112, nr 3 (2007), s. 537-547pl_PL
dc.identifier.issn0587-4246-
dc.identifier.urihttp://hdl.handle.net/20.500.12128/8313-
dc.description.abstractWe investigate two-site electronic correlations within generalized Hubbard model, which incorporates the conventional Hubbard model (parameters: t (hopping between nearest neighbours), U (Coulomb repulsion (attraction))) supplemented by the intersite Coulomb interactions (parameters: J(1) (parallel spins), J(2) (antiparallel spins)) and the hopping of the intrasite Cooper pairs (parameter: V ). As a first step we find the eigenvalues E® and eigenvectors jE®i of the dimer and we represent each partial Hamiltonian E®jE®ihE®j (® = 1; 2; : : : ; 16) in the second quantization with the use of the Hubbard and spin operators. Each dimer energy level possesses its own Hamiltonian describing different two-site interactions which can be active only in the case when the level will be occupied by the electrons. A typical feature is the appearance of two generalized t-J interactions ascribed to two different energy levels which do not vanish even for U = J(1) = J(2) = V = 0 and their coupling constants are equal to §t in this case. In the large U-limit for J(1) = J(2) = V = 0 there is only one t¡J interaction with coupling constant equal to 4t2=jUj as in the case of a real lattice. The competition between ferromagnetism, antiferromagnetism and superconductivity (intrasite and intersite pairings) is also a typical feature of the model because it persists in the case U = J(1) = J(2) = V = 0 and t 6= 0. The same types of the electronic, competitive interactions are scattered between different energy levels and therefore their thermodynamical activities are dependent on the occupation of these levels. It qualitatively explains the origin of the phase diagram of the model. We consider also a real lattice as a set of interacting dimers to show that the competition between magnetism and superconductivity seems to be universal for fermionic lattice models.pl_PL
dc.language.isoenpl_PL
dc.rightsUznanie autorstwa-Użycie niekomercyjne-Bez utworów zależnych 3.0 Polska*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/pl/*
dc.subjectteorie i modele układów wieloelektronowychpl_PL
dc.subjectgaz elektronowypl_PL
dc.subjectgaz Fermiegopl_PL
dc.subjectModel Hubbardapl_PL
dc.subjectmetale przejściowepl_PL
dc.subjectstopypl_PL
dc.subjectsilnie skorelowane systemy elektronowepl_PL
dc.subjectciężkie fermionypl_PL
dc.subjectsystemy wąskopasmowepl_PL
dc.subjectkropki kwantowepl_PL
dc.subjectnanokryształypl_PL
dc.subjectnanocząsteczkipl_PL
dc.titleElectronic correlations within fermionic lattice modelspl_PL
dc.typeinfo:eu-repo/semantics/articlepl_PL
Pojawia się w kolekcji:Artykuły (WNŚiT)

Pliki tej pozycji:
Plik Opis RozmiarFormat 
Matlak_Electronic_correlations_within_fermionic.pdf335,07 kBAdobe PDFPrzejrzyj / Otwórz
Pokaż prosty rekord


Uznanie autorstwa - użycie niekomercyjne, bez utworów zależnych 3.0 Polska Creative Commons Creative Commons