Skip navigation

Please use this identifier to cite or link to this item:
Title: Development of Embryo Suspensors for Five Genera of Crassulaceae with Special Emphasis on Plasmodesmata Distribution and Ultrastructure
Authors: Kozieradzka-Kiszkurno, Małgorzata
Majcher, Daria
Brzezicka, Emilia
Rojek, Joanna
Wróbel-Marek, Justyna
Kurczyńska, Ewa
Keywords: Aeonium; Aichryson; Echeveria; Embryo
Issue Date: 2020
Citation: "Plants" Vol. 9, iss. 3 (2020), art. no.320, s. 1-7
Abstract: The suspensor in the majority of angiosperms is an evolutionally conserved embryonic structure functioning as a conduit that connects ovule tissues with the embryo proper for nutrients and growth factors flux. This is the first study serving the purpose of investigating the correlation between suspensor types and plasmodesmata (PD), by the ultrastructure of this organ in respect of its full development. The special attention is paid to PD in representatives of Crassulaceae genera: Sedum, Aeonium, Monanthes, Aichryson and Echeveria. The contribution of the suspensor in transporting nutrients to the embryo was confirmed by the basal cell structure of the suspensor which produced, on the micropylar side of all genera investigated, a branched haustorium protruding into the surrounding ovular tissue and with wall ingrowths typically associated with cell transfer. The cytoplasm of the basal cell was rich in endoplasmic reticulum, mitochondria, dictyosomes, specialized plastids, microtubules, microbodies and lipid droplets. The basal cell sustained a symplasmic connection with endosperm and neighboring suspensor cells. Our results indicated the dependence of PD ultrastructure on the type of suspensor development: (i) simple PD are assigned to an uniseriate filamentous suspensor and (ii) PD with an electron-dense material are formed in a multiseriate suspensor. The occurrence of only one or both types of PD seems to be specific for the species but not for the genus. Indeed, in the two tested species of Sedum (with the distinct uniseriate/multiseriate suspensors), a diversity in the structure of PD depends on the developmental pattern of the suspensor. In all other genera (with the multiseriate type of development of the suspensor), the one type of electron-dense PD was observed.
DOI: 10.3390/plants9030320
ISSN: 2223-7747
Appears in Collections:Artykuły (WNP)

Files in This Item:
File Description SizeFormat 
Kozieradzka-Kiszkurno_Development_of_Embryo_Suspensors_for_Five_Genera.pdf3,88 MBAdobe PDFView/Open
Show full item record

Uznanie Autorstwa 3.0 Polska Creative Commons License Creative Commons