Skip navigation

Zastosuj identyfikator do podlinkowania lub zacytowania tej pozycji: http://hdl.handle.net/20.500.12128/20353
Pełny rekord metadanych
DC poleWartośćJęzyk
dc.contributor.authorKasperkiewicz, Katarzyna-
dc.contributor.authorMajor, Roman-
dc.contributor.authorSypien, Anna-
dc.contributor.authorKot, Marcin-
dc.contributor.authorDyner, Marcin-
dc.contributor.authorMajor, Łukasz-
dc.contributor.authorByrski, Adam-
dc.contributor.authorKopernik, Magdalena-
dc.contributor.authorLackner, Juergen M.-
dc.date.accessioned2021-06-07T09:40:00Z-
dc.date.available2021-06-07T09:40:00Z-
dc.date.issued2021-
dc.identifier.citation"Molecules" (2021), iss. 11, art. no. 3145, s. 1-17pl_PL
dc.identifier.issn1420-3049-
dc.identifier.urihttp://hdl.handle.net/20.500.12128/20353-
dc.description.abstractThe goal of the work was to develop materials dedicated to spine surgery that minimized the potential for infection originating from the transfer of bacteria during long surgeries. The bacteria form biofilms, causing implant loosening, pain and finally, a risk of paralysis for patients. Our strategy focused both on improvement of antibacterial properties against bacteria adhesion and on wear and corrosion resistance of tools for spine surgery. Further, a ~35% decrease in implant and tool dimensions was expected by introducing ultrahigh-strength titanium alloys for less-invasive surgeries. The tested materials, in the form of thin, multi-layered coatings, showed nanocrystalline microstructures. Performed direct-cytotoxicity studies (including lactate dehydrogenase activity measurement) showed that there was a low probability of adverse effects on surrounding SAOS-2 (Homo sapiens bone osteosarcoma) cells. The microbiological studies (e.g., ISO 22196 contact tests) showed that implanting Ag nanoparticles into Ti/TixN coatings inhibited the growth of E. coli and S. aureus cells and reduced their adhesion to the material surface. These findings suggest that Ag-nanoparticles present in implant coatings may potentially minimize infection risk and lower inherent stress.pl_PL
dc.language.isoenpl_PL
dc.rightsUznanie autorstwa 3.0 Polska*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/pl/*
dc.subjectmultilayer coatingspl_PL
dc.subjectantimicrobial materialspl_PL
dc.subjectbiomaterialspl_PL
dc.subjectAg nanoparticlespl_PL
dc.subjecttitaniumpl_PL
dc.subjectspinal implantspl_PL
dc.subjectbiofilmpl_PL
dc.subjectSAOS2pl_PL
dc.subjectcytotoxicitypl_PL
dc.titleAntibacterial Optimization of Highly Deformed Titanium Alloys for Spinal Implantspl_PL
dc.typeinfo:eu-repo/semantics/articlepl_PL
dc.identifier.doi10.3390/molecules26113145-
Pojawia się w kolekcji:Artykuły (WNP)

Pliki tej pozycji:
Plik Opis RozmiarFormat 
Kaperkiewicz_Major_antibacterial_optimalization_of_highly.pdf2,85 MBAdobe PDFPrzejrzyj / Otwórz
Pokaż prosty rekord


Uznanie Autorstwa 3.0 Polska Creative Commons Creative Commons