Skip navigation

Please use this identifier to cite or link to this item:
Title: Asymptotic properties of discrete linear fractional equations
Authors: Anh, P. T.
Babiarz, Artur
Czornik, Adam
Niezabitowski, Michał
Siegmund, S.
Keywords: Linear discrete-time fractional systems; Caputo equation
Issue Date: 2019
Citation: "Bulletin of the Polish Academy of Sciences Technical Sciences" 2019, nr 4, s. 749-759
Abstract: In this paper we study the dynamical behavior of linear discrete-time fractional systems. The first main result is that the norm of the difference of two different solutions of a time-varying discrete-time Caputo equation tends to zero not faster than polynomially. The second main result is a complete description of the decay to zero of the trajectories of one-dimensional time-invariant stable Caputo and Riemann-Liouville equations. Moreover, we present Volterra convolution equations, that are equivalent to Caputo equations.
DOI: 10.24425/bpasts.2019.130184
ISSN: 2300-1917
Appears in Collections:Artykuły (WNŚiT)

Files in This Item:
File Description SizeFormat 
Anh_Asymptotic_properties.pdf558,28 kBAdobe PDFView/Open
Show full item record

Uznanie autorstwa - użycie niekomercyjne, bez utworów zależnych 3.0 Polska Creative Commons License Creative Commons