DC Field | Value | Language |
dc.contributor.author | Kominek, Zygfryd | - |
dc.date.accessioned | 2020-09-16T12:47:01Z | - |
dc.date.available | 2020-09-16T12:47:01Z | - |
dc.date.issued | 1981 | - |
dc.identifier.citation | Demonstratio Mathematica, Vol. 14, nr 4 (1981) s. 1031-1052 | pl_PL |
dc.identifier.issn | 2391-4661 | - |
dc.identifier.issn | 0420-1213 | - |
dc.identifier.uri | http://hdl.handle.net/20.500.12128/15958 | - |
dc.description.abstract | We shall consider the system of functional equations (1) ^(x) = h^x,^ [f(x)] .... ), i=1,...,m,
where the functions h^ and f of the type Rm+"' —»-R and Rn—*Rn, respectively, are given and are unknown functions. The fundamental theorems regarding the uniqueness and the existence of solutions of the class Cr in the case m=1 are. due to B.Choczewski ( [l] , [2]). This theory has been further extended by J.Matkowski [6]. Our theorem (see §3) generalizes also some result of the author obtained in the case of functions of real variable [4]. On the other hand, the system (1) may be treated as a generalization of Schroeder's
equation. Therefore the results of this paper correspond to others contained in [3], [5] and [8] (Fragment tekstu). | pl_PL |
dc.language.iso | en | pl_PL |
dc.rights | Uznanie autorstwa-Użycie niekomercyjne-Bez utworów zależnych 3.0 Polska | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/pl/ | * |
dc.subject | functional equations | pl_PL |
dc.subject | functions | pl_PL |
dc.subject | Schroeder's equation | pl_PL |
dc.title | On The Functional Equation p(x)=h(x, ^[f(x)]) | pl_PL |
dc.type | info:eu-repo/semantics/article | pl_PL |
dc.identifier.doi | 10.1515/dema-1981-0420 | - |
Appears in Collections: | Artykuły (WNŚiT)
|