Skip navigation

Zastosuj identyfikator do podlinkowania lub zacytowania tej pozycji: http://hdl.handle.net/20.500.12128/19185
Tytuł: Interactions of a Water-Soluble Glycofullerene with Glucose Transporter 1. Analysis of the Cellular Effects on a Pancreatic Tumor Model
Autor: Barańska, Edyta
Wiecheć-Cudak, Olga
Rak, Monika
Bienia, Aleksandra
Mrozek-Wilczkiewicz, Anna
Krzykawska-Serda, Martyna
Serda, Maciej
Słowa kluczowe: glycofullerenes; drug delivery vehicles; pancreatic; cancer; [60]fullerene
Data wydania: 2021
Źródło: "Nanomaterials" (2021), Vol. 11, iss. 2, art. no. 513
Abstrakt: In recent years, carbon nanomaterials have been intensively investigated for their possible applications in biomedical studies, especially as drug delivery vehicles. Several surface modifications can modulate the unique molecular structure of [60]fullerene derivatives, as well as their physicochemical properties. For this reason, covalent modifications that would enable a greater water solubilization of the fullerene buckyball have been rapidly investigated. The most exciting applications of fullerene nanomaterials are as drug delivery vectors, photosensitizers in photodynamic therapy (PDT), astransfection or MRI contrast agents, antimicrobials and antioxidants. From these perspectives, the glucose derivatives of [60]fullerene seem to be an interesting carbon nanomaterial for biological studies. It is well-known that cancer cells are characterized by an increased glucose uptake and it has also been previously reported that the glucose transporters (GLUTs) are overexpressed in several types of cancers, which make them attractive molecular targets for many drugs. This study explored the use of a highly water-soluble glycofullerene (called Sweet-C60) in pancreatic cancer studies. Here, we describe the PANC-1 cell proliferation, migration, metabolic activity and glycolysis rate after incubations with different concentrations of Sweet-C60. The final results did not show any influence of the Sweet-C60 on various cancer cellular events and glycolysis, suggesting that synthesized glycofullerene is a promising drug delivery vehicle for treating pancreatic cancer.
URI: http://hdl.handle.net/20.500.12128/19185
DOI: 10.3390/nano11020513
ISSN: 2079-4991
Pojawia się w kolekcji:Artykuły (WNŚiT)

Pliki tej pozycji:
Plik Opis RozmiarFormat 
Mrozek_Wilczkiewicz_interactions_of_a_water.pdf3,61 MBAdobe PDFPrzejrzyj / Otwórz
Pokaż pełny rekord


Uznanie Autorstwa 3.0 Polska Creative Commons Creative Commons