Skip navigation

Zastosuj identyfikator do podlinkowania lub zacytowania tej pozycji: http://hdl.handle.net/20.500.12128/23763
Pełny rekord metadanych
DC poleWartośćJęzyk
dc.contributor.authorFaria Junior, Paulo E.-
dc.contributor.authorZollner, Klaus-
dc.contributor.authorWoźniak, Tomasz-
dc.contributor.authorKurpas, Marcin-
dc.contributor.authorGmitra, Martin-
dc.contributor.authorFabian, Jaroslav-
dc.date.accessioned2022-08-12T11:34:54Z-
dc.date.available2022-08-12T11:34:54Z-
dc.date.issued2022-
dc.identifier.citation"New Journal of Physics" (2022), Vol. 24,art. no. 083004pl_PL
dc.identifier.issn1367-2630-
dc.identifier.urihttp://hdl.handle.net/20.500.12128/23763-
dc.description.abstractTransition metal dichalcogenides (TMDCs) are ideal candidates to explore the manifestation of spin-valley physics under external stimuli. In this study, we investigate the influence of strain on the spin and orbital angular momenta, effective g-factors, and Berry curvatures of several monolayer TMDCs (Mo andWbased) using a full ab initio approach. At the K-valleys, we find a surprising decrease of the conduction band spin expectation value for compressive strain, consequently increasing the dipole strength of the dark exciton by more than one order of magnitude (for ∼1%–2% strain variation).We also predict the behavior of direct excitons g-factors under strain: tensile (compressive) strain increases (decreases) the absolute value of g-factors. Strain variations of ∼1% modify the bright (A and B) excitons g-factors by ∼0.3(0.2) forW(Mo) based compounds and the dark exciton g-factors by ∼0.5 (0.3) forW (Mo) compounds. Our predictions could be directly visualized in magneto-optical experiments in strained samples at low temperature. Additionally, our calculations strongly suggest that strain effects are one of the possible causes of g-factor fluctuations observed experimentally. By comparing the different TMDC compounds, we reveal the role of spin–orbit coupling (SOC): the stronger the SOC, the more sensitive are the spin-valley features under applied strain. Consequently, monolayerWSe2 is a formidable candidate to explore the role of strain on the spin-valley physics.We complete our analysis by considering the side valleys, Γ and Q points, and by investigating the influence of strain in the Berry curvature. In the broader context of valley- and strain-tronics, our study provides fundamental microscopic insights into the role of strain in the spin-valley physics of TMDCs, which are relevant to interpret experimental data in monolayer TMDCs as well as TMDC-based van der Waals heterostructures.pl_PL
dc.language.isoenpl_PL
dc.rightsUznanie autorstwa 3.0 Polska*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/pl/*
dc.subjectspin-valleypl_PL
dc.subjectvalley Zeemanpl_PL
dc.subjectspin-mixingpl_PL
dc.subjectTMDCpl_PL
dc.subjectvalleytronicspl_PL
dc.subjectstraintronicspl_PL
dc.subjectstrainpl_PL
dc.titleFirst-principles insights into the spin-valley physics of strained transition metal dichalcogenides monolayerspl_PL
dc.typeinfo:eu-repo/semantics/articlepl_PL
dc.identifier.doi10.1088/1367-2630/ac7e21-
Pojawia się w kolekcji:Artykuły (WNŚiT)

Pliki tej pozycji:
Plik Opis RozmiarFormat 
Kurpas_first_rinciplest_insights_into.pdf3,7 MBAdobe PDFPrzejrzyj / Otwórz
Pokaż prosty rekord


Uznanie Autorstwa 3.0 Polska Creative Commons Creative Commons