Skip navigation

Please use this identifier to cite or link to this item:
Title: Systems of Inequalities Characterizing Ring Homomorphisms
Authors: Fechner, Włodzimierz
Olbryś, Andrzej
Keywords: Ring Homomorphisms; Inequalities
Issue Date: 2016
Citation: Journal of Function Spaces, (2016), art. no. 8069104, s. 1-5
Abstract: Assume that T : P -> R and U : P -> R are arbitrary mappings between two partially ordered rings P and R. We study a few systems of functional inequalities which characterize ring homomorphisms. For example, we prove that if T and U satisfy T(f+g) >= T(f)+T(g), U(f.g) >= U(f).U(g), for all f,g is an element of P and T >= U, then U = T and thismapping is a ring homomorphism. Moreover, we find two other systems for which we obtain analogous assertions.
DOI: 10.1155/2016/8069104
ISSN: 2314-8896
Appears in Collections:Artykuły (WNŚiT)

Files in This Item:
File Description SizeFormat 
Fechner_Systems_of_Inequalities_Characterizing_Ring_Homomorphisms.pdf2,05 MBAdobe PDFView/Open
Show full item record

Uznanie Autorstwa 3.0 Polska Creative Commons License Creative Commons