Skip navigation

Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12128/4588
Title: Analysis of Al2O3 Nanostructure Using Scanning Microscopy
Authors: Kubica, Marek
Skoneczny, Władysław
Bara, Marek
Keywords: Nanostructure; Scanning
Issue Date: 2018
Citation: Scanning, 2018, Art. ID 8459768, s. 1-7
Abstract: It has been reported that the size and shape of the pores depend on the structure of the base metal, the type of electrolyte, and the conditions of the anodizing process. The paper presents thin Al2O3 oxide layer formed under hard anodizing conditions on a plate made of EN AW-5251 aluminum alloy. The oxidation of the ceramic layer was carried out for 40–80 minutes in a three-component SAS electrolyte (aqueous solution of acids: sulphuric 33ml/l, adipic 67 g/l, and oxalic 30 g/l) at a temperature of 293–313K, and the current density was 200–400 A/m2. Presented images were taken by a scanning microscope. A computer analysis of the binary images of layers showed different shapes of pores. The structure of ceramic Al2O3 layers is one of the main factors determining mechanical properties.The resistance to wear of specimen-oxide coating layer depends on porosity, morphology, and roughness of the ceramic layer surface.A3D oxide coatingmodel, based on the computer analysis of images froma scanning electron microscope (Philips XL 30 ESEM/EDAX), was proposed.
URI: http://hdl.handle.net/20.500.12128/4588
DOI: 10.1155/2018/8459768
ISSN: 0161-0457
1932-8745
Appears in Collections:Artykuły (WINOM)

Files in This Item:
File Description SizeFormat 
Kubica_Analysis_of_Al2O3_nanostructure_using.pdf6,2 MBAdobe PDFView/Open
Show full item record


Uznanie Autorstwa 3.0 Polska Creative Commons License Creative Commons