Skip navigation

Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12128/4920
Title: An elementary proof of the d-th power reciprocity law over function fields
Authors: Blaszczok, Anna
Keywords: Polynomial ring; d-th power residue; Reciprocity law
Issue Date: 2011
Citation: Annales Mathematicae Silesianae, [Nr] 25 (2011), s. 49-57
Abstract: This paper generalises the proof of quadratic reciprocity law in Fq[T] presented by C. G. Ji and Y. Xue [Proc. Amer. Math. Soc. 136 (2008), no. 9, 3035–3039; MR2407064] to the case of d-th power residues, where d divides the order of F∗q. Using only elementary properties of finite fields and basic number-theoretic tools we show that if P,Q∈Fq[T] are distinct irreducible polynomials then (PQ)d=(−1)q−1ddeg(P)deg(Q)(QP)d, where (PQ)d is the d-th power residue symbol
URI: http://hdl.handle.net/20.500.12128/4920
ISSN: 0860-2107
2391-4238
Appears in Collections:Artykuły (WMFiCH)

Files in This Item:
File Description SizeFormat 
Blaszczok_An_elementary_proof_of_the_d-th_power_reciprocity_law.pdf693,93 kBAdobe PDFView/Open
Show full item record


Uznanie autorstwa - użycie niekomercyjne, bez utworów zależnych 3.0 Polska Creative Commons License Creative Commons