Skip navigation

Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12128/4972
Title: Strong unique ergodicity of random dynamical systems on Polish spaces
Authors: Płonka, Paweł
Keywords: Random dynamical systems; Invariant measures; Asymptotic stability
Issue Date: 2016
Citation: Annales Mathematicae Silesianae, Nr 30 (2016), s. 129-142
Abstract: In this paper we want to show the existence of a form of asymptotic stability of random dynamical systems in the sense of L. Arnold using arguments analogous to those presented by T. Szarek in [6], that is showing it using conditions generalizing the notion of tightness of measures. In order to do that we use tightness theory for random measures as developed by H. Crauel in [2].
URI: http://hdl.handle.net/20.500.12128/4972
DOI: 10.1515/amsil-2016-0002
ISSN: 0860-2107
2391-4238
Appears in Collections:Artykuły (WMFiCH)

Files in This Item:
File Description SizeFormat 
Plonka_Strong_unique_ergodicity_of_random_dynamical_systems_on_polish_spaces.pdf614,44 kBAdobe PDFView/Open
Show full item record


Uznanie autorstwa - użycie niekomercyjne, bez utworów zależnych 3.0 Polska Creative Commons License Creative Commons