Skip navigation

Zastosuj identyfikator do podlinkowania lub zacytowania tej pozycji: http://hdl.handle.net/20.500.12128/5643
Pełny rekord metadanych
DC poleWartośćJęzyk
dc.contributor.authorZachariasz, Radosław-
dc.contributor.authorBochenek, Dariusz-
dc.contributor.authorIlczuk, Jan-
dc.date.accessioned2018-08-01T05:36:38Z-
dc.date.available2018-08-01T05:36:38Z-
dc.date.issued2013-
dc.identifier.citationComposites Theory and Practice, Vol. 13, iss. 4 (2013), s. 250–254pl_PL
dc.identifier.issn2084-6096-
dc.identifier.urihttp://hdl.handle.net/20.500.12128/5643-
dc.description.abstractThe work presents the technology and investigation results of ferroelectric-ferromagnetic composites based on ferroelectric powders of the PZT type and ferrite. The ferroelectric powder comprised two PZT type compositions: Pb0.84Ba0.16(Zr0.54Ti0.46)O3 + 1.0%at. Nb2O5 (PBZTN) and Pb(Zr0.51Ti0.49)O3 + 0.2%at. Bi2O3 + 0.03%at. Nb2O5 + 0.06%at. MnO2 (PZTBNM). The initial constituents for obtaining the PZT type powders included oxides: PbO, ZrO2, TiO2, Nb2O5, Cr2O3 as well as carbonates: barium BaCO3 and strontium SrCO3. In the PZT-ferrite composites, the synthesized ferroelectric powder constituted 90%, whereas the ferrite powder (Ni0.64Zn0.36Fe2O4) was 10%. Temperature examinations of the internal friction (IF) of the PZT-ferrite type composites, which belong to nondestructive methods of material examination in mechanical spectrometry, and also measurements of the dielectric properties were performed. The IF method enabled the authors to determine mechanical properties such as mechanical losses or value of Young's modulus in a broad range of temperatures. For both the investigated composites, an increase in mechanical losses Q–1 and decrease in Young's modulus Y with an increase in temperature were observed. At the phase transition point connected with an electric sub-system change while changing from the ferroelectric to paraelectric state, a rapid increase in Young's modulus Ywas observed. It was confirmed in further investigations of dielectric properties ε(T) i tanδ (T).pl_PL
dc.language.isoenpl_PL
dc.rightsUznanie autorstwa-Użycie niekomercyjne-Bez utworów zależnych 3.0 Polska*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/pl/*
dc.subjectmechanical lossespl_PL
dc.subjectinternal frictionpl_PL
dc.subjectYoung's moduluspl_PL
dc.subjectferroelectric-ferromagnetic compositespl_PL
dc.subjectPZT-type ceramicspl_PL
dc.subjectferritespl_PL
dc.subjectmultiferroicspl_PL
dc.titleMechanical losses and dielectric properties in ferroelectric-ferromagnetic compositespl_PL
dc.typeinfo:eu-repo/semantics/articlepl_PL
dc.relation.journalComposites Theory and Practicepl_PL
dc.description.references[1] Xu Y., Ferroelectric Materials and their Applications, North Holland, Amsterdam 1991. [2] Long W., Ching-Chuang W., Tien-Shon W., Hs-Chuan L., Improved ceramics for piezoelectric devices, Journal Physics C: Solid State Physics 1983, 16, 2813-2821. [3] Fesenko E.G., Danciger A.Ya., Rozumovskaya O.N., Novye pieokeramicheskie materialy, Izd. RGU, Rostov na Donu 1983. [4] Zachariasz R, Bochenek D., Properties of the PZT type ceramics admixed with barium and niobium, Archives of Metallurgy and Materials 2009, 54, 895-902. [5] Zachariasz R., Bochenek D., Dziadosz K., Ilczuk J., Dudek J., Influence of the Nb and Ba dopands on the properties of the PZT type ceramics, Archives of Metallurgy and Materials 2011, 56, 1217-1222. [6] Penchal Reddy M., Madhuri W., Ramamanohar Reddy N., Siva Kumar K.V., Murthy V.R.K., Ramakrishna Reddy R., Magnetic properties of Ni-Zn ferrites prepared by microwave sintering method, Journal of Electroceramics 2012, 28, 1-9. [7] Ghatak S., Meikap A.K., Sinha M., Pradhan S.K., Electrical conductivity, magnetoconductivity and dielectric behaviour of (Mg, Ni) - ferrite below room temperature, Materials Sciences and Applications 2010, 1, 177-186. [8] Ravi Kumar G., Venudhar Y.C., Raghavender A.T., Vijaya Kumar K., Electrical properties of copper substituted nickel ferrites, Journal of the Korean Physical Society 2012, 60, 1082-1086. [9] Puskar A., Internal Friction of Materials, Cambridge International Science Publishing, Cambridge 2001. [10] Elkoun S., David L., Magalas B.L., Mechanical Spectroscopy and other Relaxation Spectroscopies, Solid State Phenomena, 2003, 89, 31. [11] Wang C., Fang Q.F., Shi Y., Zhu Z.G., Internal friction study on oxygen vacancies and domain walls in Pb(Zr,Ti)O3 ceramics, Materials Ressearch Bulletin 2001, 36, 2657--2665. [12] Zachariasz R., Zarycka A., Ilczuk J., Determination of the lead titanate zirconate phase diagram by the measurements of the internal friction and Young’s modulus, Material Science 2005, 25, 781-789. [13] Gutierrez-Urrutia L.M., Carreno-Morelli E., Guisolan B., Schaller R., San-Juan J., High performance very low frequency forced pendulum, Materials Science Engineering, 2004, A370, 435-439. [14] Bruś B., Zachariasz R., Ilczuk J., The influence of the point defects on the relaxation processes in a ceramics of the PZT type, Physica Status Solidi 2001, A 201, 249-254. [15] Bruś B., Zachariasz R., Ilczuk J., Zarycka A., Internal friction in hard and soft PZT-based ceramics, Archives of Acoustics 2005, 30(4), 59-62. [16] Trojanova Z., Lukac P., Ferkel H., Riehemann W., Internal friction in microcrystalline and nanocrystalline Mg, Materials Science and Engineering 2004, A 370, 154-157. [17] Zachariasz R., Czerwiec M., Brzezińska D., Ilczuk J., Ferroelectric and ferromagnetic ceramics in a view of possibilities to be used in electroacoustics, Hydroacoustics 2008, 11, 63-70. [18] Miloshenko V.E., Kalyadin O.V., Superconductors and the method of low - frequency internal friction, Metal Science and Heat Treatment 2012, 54, 281-284. [19] Zachariasz R., Zarycka A., Ilczuk J., Chrobak A., The internal friction related to the mobility of domain wall in the PZT ceramics obtained by the sol-gel method, Material Science 2005, 23(1), 159-166. [20] Zachariasz R., Bruś B., Bartkowska J., Bluszcz J., Ilczuk J., Domain wall motion effect in piezoelectric ceramics, Journal de Physique IV, 2006, 137, 19-21. [21] Bochenek D., Niemiec P., Wawrzała P., Chrobak A., Multiferroic ceramic composites based on PZT type ceramic and NiZnFe, Ferroelectrics 2013, 448, 96-105. [22] Bochenek D., Grabowski F., Niemiec P., Influence of cobalt admixture on the microstructure and dielectric properties of PFN ceramics, Archives of Metallurgy and Materials 2011, 56, 1071-1076. [23] Frayssignes H., Gabbay M., Fantozzi G., Porch N.J., Cheng B.L., Button T.W., Internal friction in hard and soft PZT-based ceramics, Journal of the European Ceramic Society 2004, 24, 2989-2994.pl_PL
Pojawia się w kolekcji:Artykuły (WNŚiT)

Pliki tej pozycji:
Plik Opis RozmiarFormat 
Zachariasz_Mechanical_losses_and_dielectric_properties_in.pdf537,8 kBAdobe PDFPrzejrzyj / Otwórz
Pokaż prosty rekord


Uznanie autorstwa - użycie niekomercyjne, bez utworów zależnych 3.0 Polska Creative Commons Creative Commons