Skip navigation

Zastosuj identyfikator do podlinkowania lub zacytowania tej pozycji: http://hdl.handle.net/20.500.12128/578
Tytuł: Assessment of significance of features acquired from thyroid ultrasonograms in Hashimoto’s disease
Autor: Koprowski, Robert
Zieleźnik, Witold
Wróbel, Zygmunt
Małyszek, Justyna
Stępień, Beata
Wójcik, Waldemar
Słowa kluczowe: Hashimoto Disease; Image Processing; Thyroid; Ultrasonograms
Data wydania: 2012
Źródło: BioMedical Engineering Online, (2012), vol. 11, art. no 48 p. 1-20
Abstrakt: Introduction: This paper concerns the analysis of the features obtained from thyroid ultrasound images in left and right transverse and longitudinal sections. In the image analysis, the thyroid lobe is treated as a texture for healthy subjects and patients with Hashimoto's disease. The applied methods of analysis and image processing were profiled to obtain 10 features of the image. Then, their significance in the classification was shown.Material: In this study, the examined group consisted of 29 healthy subjects aged 18 to 60 and 65 patients with Hashimoto's disease. For each subject, four ultrasound images were taken. They were all in transverse and longitudinal sections of the right and left lobe of the thyroid, which gave 376 images in total.Method: 10 different features obtained from each ultrasound image were suggested. The analyzed thyroid lobe was marked automatically or manually with a rectangular element.Results: The analysis of 10 features and the creation for each one of them their own decision tree configuration resulted in distinguishing 3 most significant features. The results of the quality of classification show accuracy above 94% for a non-trimmed decision tree.
URI: http://hdl.handle.net/20.500.12128/578
DOI: 10.1186/1475-925X-11-48
ISSN: 1475-925X
Pojawia się w kolekcji:Artykuły (WINOM)

Pliki tej pozycji:
Plik Opis RozmiarFormat 
Koprowski_Assessment_of_significance_of_features_acquired_from_thyroid_ultrasonograms.pdf1,83 MBAdobe PDFPrzejrzyj / Otwórz
Pokaż pełny rekord


Uznanie Autorstwa 3.0 Polska Creative Commons Creative Commons