Skip navigation

Zastosuj identyfikator do podlinkowania lub zacytowania tej pozycji: http://hdl.handle.net/20.500.12128/5863
Pełny rekord metadanych
DC poleWartośćJęzyk
dc.contributor.authorBochenek, Dariusz-
dc.contributor.authorSkulski, Ryszard-
dc.contributor.authorNiemiec, Przemysław-
dc.date.accessioned2018-08-24T06:19:09Z-
dc.date.available2018-08-24T06:19:09Z-
dc.date.issued2018-08-
dc.identifier.citationMaterials, Vol. 11, iss. 8 (2018), Art. no. 1292pl_PL
dc.identifier.issn1996-1944-
dc.identifier.urihttp://hdl.handle.net/20.500.12128/5863-
dc.description.abstractThe (1-y) ((1-x)Pb(Mg1/3Nb2/3)O3–xPbTiO3 )–yPbSnO3 solid solution (PMN–PT–PS) was obtained and investigated in the present paper. For the analysis of the influence of the PbSnO3 component on the electrophysical parameters, the compositions from the rhombohedral phase, tetragonal phase, and a mixture of these phases were selected. The six compositions of the PMN–PT have been obtained using sol–gel methods (for values of x equal to 0.25, 0.28, 0.31, 0.34, 0.37, and 0.40). The ceramic samples of the 0.9(PMN–PT)–0.1(PS) solid solution have been obtained using the conventional ceramic route. X-ray diffraction (XRD), energy dispersive spectrometry (EDS), and microstructure measurements were performed, as well as tests regarding the dielectric, ferroelectric, piezoelectric properties and electric conductivity of the PMN–PT–PS ceramic samples versus temperature. Results of the measurements show that the obtained PMN–PT–PS materials have good electrophysical properties and are well suited for use in micromechatronic and microelectronic applications.pl_PL
dc.language.isoenpl_PL
dc.rightsUznanie autorstwa-Użycie niekomercyjne-Bez utworów zależnych 3.0 Polska*
dc.rightsUznanie autorstwa 3.0 Polska*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/pl/*
dc.subjectPMN–PTpl_PL
dc.subjectferroelectric materialspl_PL
dc.subjectrelaxor materialspl_PL
dc.subjectsol–gelpl_PL
dc.subjecthysteresis looppl_PL
dc.titleElectrophysical properties of the PMN–PT–PS solid solutionpl_PL
dc.typeinfo:eu-repo/semantics/articlepl_PL
dc.relation.journalMaterialspl_PL
dc.identifier.doi10.3390/ma11081292-
dc.description.references1. Angadi, B.; Jali, V.M.; Lagare, M.T.; Bhat, V.V.; Umarji, A.M.; Kumar, R. Radiation resistance of PFN and PMN–PT relaxor ferroelectrics. Radiat. Meas. 2003, 36, 635–638. 2. Shrout, T.R.; Chang, Z.P.; Kim, N.; Markgraf, S. Dielectric behavior of single crystals near the (1-x)PbMg1/3Nb2/3O3–xPbTiO3 morphotropic phase boundary. Ferroelectr. Lett. Sect. 1990, 12, 63–69. 3. Noheda, B.; Cox, D.E.; Shirane, G.; Gao, J.; Ye, Z.-G. Phase diagram of the ferroelectric relaxor (1-x)PbMg1/3Nb2/3O3–xPbTiO3. Phys. Rev. B 2002, 66, 0541041–0541049. 4. Zekria, D.; Glazer, A.M. Automatic determination of the morphotropic phase boundary in lead magnesium niobate titanate Pb(Mg1/3Nb2/3)(1-x)TixO3 within a single crystal using birefringence imaging. J. Appl. Cryst. 2004, 37, 143–149. 5. Gehring, P.M.; Chen, W.; Ye, Z.G.; Shirane, G. The non-rhombohedral low-temperature structure of PMN–10% PT. J. Phys. Condens. Matter. 2004, 16, 7113. 6. Zekria, D.; Shuvaeva, V.A.; Glazer, A.M. Birefringence imaging measurements on the phase diagram of Pb(Mg1/3Nb2/3)O3–PbTiO3. J. Phys. Condens. Matter. 2005, 17, 1593. 7. Shuvaeva, V.A.; Glazer, A.M.; Zekria, D. The macroscopic symmetry of Pb(Mg1/3Nb2/3)1−xTixO3 in the morphotropic phase boundary region (x = 0.25–0.5). J. Phys. Condens. Matter. 2005, 17, 5709. 8. Noheda, B. Structure and high-piezoelectricity in lead oxide solid solutions. Curr. Opin. Solid State Mater. 2002, 6, 27−34. 9. La-Orauttapong, D.; Noheda, B.; Ye, Z.-G.; Gehring, P.M.; Toulouse, J.; Cox, D.E. Phase diagram of the relaxor ferroelectric (1-x)Pb(Zn1/3Nb2/3)O3−xPbTiO3. Phys. Rev. B 2002, 65, 144101. 10. Skulski, R.; Wawrzała, P.; Korzekwa, J.; Szymonik, M. The electrical conductivity of PMN–PT ceramics. Arch. Metall. Mater. 2009, 54, 717–723. 11. Skulski, R.; Wawrzała, P.; Bochenek, D.; Ćwikiel, K.; Dielectric and electromechanical behaviors of PMN–PT ceramic samples. J. Intell. Mater. Syst. Struct. 2007, 18, 1049–1056. 12. Niemiec, P.; Skulski, R.; Bochenek, D.; Wawrzała, P. Technology and properties PMN–PT–PS–PFN:Li material for multilayer capacitor. Arch. Metall. Mater. 2013, 58, 1313–1316. 13. Cross, L.E. Relaxor Ferroelectrics: An Overview. Ferroelectrics 1994, 151, 305–320. 14. Newnham, R.E.; Sundar, V.; Yimnurun, R.; Su, J.; Zhang, Q.M. Electrostriction in dielectric materials. Ceram. Trans. 1998, 88, 15–39. 15. Viehland, D.; Li, J.F. Investigations of electrostrictive Pb(Mg1/3Nb2/3)O3–PbTiO3 ceramics under high-power drive conditions: Importance of compositional fluctuations on residual hysteresis. J. Appl. Phys. 2001, 89, 1826–1835. 16. Guishing, X.; Luo, H.; Wang, P.; Zhenyi, Q.; Zhiwen, Y. Ferroelectric phase transition in relaxor ferroelectric single crystals 0.76PMN–0.24PT. Chin. Sci. Bull. 2000, 45, 1380–1385. 17. Choi, S.W.; Shrout, T.R.; Jang, S.J.; Bhalla, A.S. Dielectric and Pyroelectric Properties in the Pb(Mg1/3Nb2/3)O3–PbTiO3 System. Ferroelectrics 1989, 100, 29–38. 18. Ho, J.C.; Liu, K.S.; Lin, I.N. Study of ferroelectricity in the PMN-PT system near the morphotropic phase boundary. J. Mater. Sci. 1993, 28, 4497–4502. 19. Skulski, R.; Bochenek, D.; Wawrzała, P. Technology, physical properties and phase transitions in PMN-PT-PS ceramics. Arch. Metall. Mater. 2011, 56, 1051–1056. 20. Zhai, J.; Shen, B.; Zhang, L.; Yao, X. Preparation and dielectric properties by sol-gel derived PMN–PT powder and ceramic. Mater. Chem. Phys. 2000, 64, 1–4. 21. Bochenek, D.; Surowiak, Z.; Krok-Kowalski, J.; Poltierova-Vejpravova J. Influence of the sintering conditions on the physical proprieties of the ceramic PFN multiferroics. J. Electroceram. 2010, 25, 122–129. 22. Singh, A.K.; Pandey, D. Evidence for MB and MC phases in the morphotropic phase boundary region of (1-x)PbMg1/3Nb2/3O3–xPbTiO3: A Rietveld study. Phys. Rev. B 2003, 67, 641021–6410212. 23. Koval, V.; Briančin, J. Microstructure and electrical response of 0.9Pb(Mg1/3Nb2/3)O3-0.1PbTiO3 relaxor ceramics. Ceram. Silikáty 2003, 47, 8–12. 24. Tailor, H.N.; Bokov, A.A.; Ye, Z.-G. Dielectric characterization of (1-x)PMN–xPT (x = 0.07 and 0.10) ceramics synthesized by an ethylene glycol-based soft chemical route. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2011, 58, 1920–1927. 25. Perantie, J. Electric-Field-Induced Dielectric and Caloric Effect in Relaxor Ferroelectrics; University of Oulu: Oulu, Finland, 2014. 26. Jo, W.; Dittmer, R.; Acosta, M.; Zang, J.; Groh, C.; Sapper, E.; Wang, K.; Rödel, J. Giant electric-field-induced strains in lead-free ceramics for actuator applications–status and perspective. J. Electroceram. 2012, 29, 71–93. 27. Karapuzha, A.S.; James, N.K.; Khanbareh, H.; van der Zwaag, S.; Groen, W.A. Structure, dielectric and piezoelectric properties of donor doped PZT ceramics across the phase diagram. Ferroelectrics 2016, 504, 160–171. 28. Kumar, P.; Sharma, S.; Singh, S.; Thakur, O.P.; Prakash, C.; Goel, T.C. Structural and Electrostrictive Behaviour in PMN-PT (68:32) Ceramics. Ferroelectrics 2005, 326, 55–60.pl_PL
Pojawia się w kolekcji:Artykuły (WNŚiT)

Pliki tej pozycji:
Plik Opis RozmiarFormat 
Bochenek_Electrophysical_properties_of_the_PMT-PT-PS_solid_solution.pdf2,37 MBAdobe PDFPrzejrzyj / Otwórz
Pokaż prosty rekord


Uznanie Autorstwa 3.0 Polska Creative Commons Creative Commons