Skip navigation

Zastosuj identyfikator do podlinkowania lub zacytowania tej pozycji: http://hdl.handle.net/20.500.12128/6672
Pełny rekord metadanych
DC poleWartośćJęzyk
dc.contributor.authorRadoszewska, Daria-
dc.contributor.authorGoryczka, Tomasz-
dc.contributor.authorAdamczyk, Małgorzata-
dc.contributor.authorWodecka-Duś, Beata-
dc.contributor.authorBochenek, Dariusz-
dc.contributor.authorKozielski, Lucjan-
dc.date.accessioned2018-10-15T06:38:32Z-
dc.date.available2018-10-15T06:38:32Z-
dc.date.issued2018-
dc.identifier.citationArchives of Metallurgy and Materials, Vol. 63, iss.3 (2018), s.1295-1302pl_PL
dc.identifier.issn1733-3490-
dc.identifier.urihttp://hdl.handle.net/20.500.12128/6672-
dc.description.abstractThe discovery of (BaxCa1-x)(ZryTi1-x)O3 lead-free ceramics drawn a lot of attention to those novel materials because of their excellent piezoelectric properties. However, quite a little attention has been paid to other features of the material. This article reports a wide range of research, including composition, structure and microstructure, dielectric response and impedance spectroscopy in order to systematize and expand knowledge about this peculiar ceramics and strontium doping effect on its properties. In order to test that influence a series of samples with various strontium concentration, precisely the admixtures of 0.02, 0.04 and 0.06 mol% were prepared, as well as basic ceramics to compare obtained results.pl_PL
dc.language.isoenpl_PL
dc.rightsUznanie autorstwa-Użycie niekomercyjne-Bez utworów zależnych 3.0 Polska*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/pl/*
dc.subjectmicrostructurepl_PL
dc.subjectSr2+pl_PL
dc.subjectelectric propertiespl_PL
dc.subject(BaxCa1-x)(ZryTi1-x)O3pl_PL
dc.titleInfluence of Sr2+ dopant on microstructure and electric properties of (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 (BCZT) ceramicspl_PL
dc.typeinfo:eu-repo/semantics/articlepl_PL
dc.relation.journalArchives of Metallurgy and Materialspl_PL
dc.identifier.doi10.24425/123804-
dc.description.references[1] J. Hao, W. Bai, W. Li, J. Zhai, Correlation Between the Microstructure and Electrical Properties in High-Performance (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 Lead-Free Piezoelectric Ceramics, J. Am. Ceram. Soc. 95, 1998-2006 (2012) doi:10.1111/j.1551--2916.2012.05146.x. [2] J. Suchanicz, Bezołowiowe tytaniany ferroelektryczne, Uniwersytet Pedagogiczny im. Komisji Edukacji Narodowej (Kraków), Wydawnictwo Naukowe, Wydawnictwo Naukowe Uniwersytetu Pedagogicznego, Kraków, 2016. [3] W. Liu, X. Ren, Large Piezoelectric Effect in Pb-Free Ceramics, Phys. Rev. Lett. 103 (2009). doi:10.1103/PhysRevLett.103.257602. [4] P. Parjansri, U. Intatha, S. Eitssayeam, Dielectric, ferroelectric and piezoelectric properties of Nb 5+ doped BCZT ceramics, Mater. Res. Bull.65, 61-67 (2015). doi:10.1016/j.materresbull.2015.01.040. [5] C. Han, J. Wu, C. Pu, S. Qiao, B. Wu, J. Zhu, D. Xiao, High piezoelectric coefficient of Pr2O3-doped Ba 0.85Ca0.15Ti0.9Zr0.1O3 ceramics, Ceram. Int. 38, 6359-6363 (2012). doi:10.1016/j.ceramint.2012.05.008. [6] Y. Cui, C. Yuan, X. Liu, X. Zhao, X. Shan, Lead-free (Ba0.85-Ca0.15)(Ti0.9Zr0.1)O3-Y2O3 ceramics with large piezoelectric coefficient obtained by low-temperature sintering, J. Mater. Sci. Mater. Electron. 24, 654-657 (2012). doi:10.1007/s10854-012--0785-7. [7] D. Zhang, Y. Zhang, S. Yang, Microstructure and electrical properties of tantalum doped (Ba0.85Ca0.15)(Ti 0.9Zr0.1)O3 ceramics, J. Mater. Sci. Mater. Electron. 26, 909-915 (2014). doi:10.1007/s10854-014-2481-2. [8] H.I. Humburg, M. Acosta, W. Jo, K.G. Webber, J. Rödel, Stress--dependent electromechanical properties of doped (Ba1−xCax)(ZryTi1−y)O3, J. Eur. Ceram. Soc. 35, 1209-1217 (2015). doi:10.1016/j.jeurceramsoc.2014.10.016. [9] W. Li, Z. Xu, R. Chu, P. Fu, P. An, Effect of Ho doping on piezoelectric properties of BCZT ceramics, Ceram. Int.38, 4353-4355 (2012). doi:10.1016/j.ceramint.2011.12.066. [10] Y.-R. Cui, X.-Y. Liu, C.-L. Yuan, X. Zhai, Y.-B. Hu, R.-W. Li, Preparation and Properties of Sm2O3Doped (Ba0.7Ca0.3)TiO3-Ba-(Zr0.2Ti0.8)O3 Lead-free Piezoelectric Ceramics, J. Inorg. Mater. 27, 731-734 (2012). doi:10.3724/SP.J.1077.2012.11517. [12] T. Miki, A. Fujimoto, S. Jida, An evidence of trap activation for positive temperature coefficient of resistivity in BaTiO3 ceramics with substitutional Nb and Mn as impurities, J. Appl. Phys. 83, 1592-1603 (1998). doi:10.1063/1.366870. [13] R.N. Schwartz, B.A. Wechsler, Electron-paramagnetic-resonance study of transition-metal-doped BaTiO3 : Effect of material processing on Fermi-level position, Phys. Rev. B. 48, (1993). doi:10.1103/PhysRevB.48.7057. [14] H. Herrig, R. Hempelmann, Microemulsion mediated synthesis of ternary and quaternary nanoscale mixed oxide ceramic powders, Nanostructured Mater.9, 241-244 (1997). doi:10.1016/S0965-9773(97)90063-5. [15] R.N. Viswanath, S. Ramasamy, Preparation and ferroelectric phase transition studies of nanocrystalline BaTiO3, Nanostructured Mater. 8, 155-162 (1997). doi:10.1016/S0965-9773(97)00004-4. [16] L. Zhang, L. Zhong, C.L. Wang, P.L. Zhang, Y.G. Wang, Dielectric Properties of Ba0.7Sr0.3TiO3 Ceramics with Different Grain Size, Phys. Status Solidi A. 168, 543-548 (1998). doi:10.1002/(SICI)1521-396X(199808)168:2<543pl_PL
Pojawia się w kolekcji:Artykuły (WNŚiT)

Pliki tej pozycji:
Plik Opis RozmiarFormat 
Radoszewska_Influence_of_Sr2+_dopant_on_microstructure.pdf1,21 MBAdobe PDFPrzejrzyj / Otwórz
Pokaż prosty rekord


Uznanie autorstwa - użycie niekomercyjne, bez utworów zależnych 3.0 Polska Creative Commons Creative Commons