Skip navigation

Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12128/8063
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSieroń, Łukasz-
dc.contributor.authorLesiak, Marta-
dc.contributor.authorSchisler, Izabela-
dc.contributor.authorDrzazga, Zofia-
dc.contributor.authorFertala, Andrzej-
dc.contributor.authorSieroń, Aleksander-
dc.date.accessioned2019-01-31T12:46:51Z-
dc.date.available2019-01-31T12:46:51Z-
dc.date.issued2019-
dc.identifier.citationBioscience Reports, Vol. 39, iss. 1 (2019), Art. No. BSR20180270pl_PL
dc.identifier.issn1573-4935-
dc.identifier.urihttp://hdl.handle.net/20.500.12128/8063-
dc.description.abstractInactive mammalian tolloid-like 1 (tll1) and mutations detected in tolloid-like 1 (TLL1) have been linked to the lack of the heart septa formation in mice and to a similar human inborn condition called atrial-septal defect 6 (ASD6; OMIM 613087, formerly ASD II). Previously, we reported four point mutations in TLL1 found in approximately 20% of ASD6 patients. Three mutations in the coding sequence were M182L, V238A, and I629V. In this work, we present the effects of these mutations on TLL1 function. Three recombinant cDNA constructs carrying the mutations and onewild-type construct were prepared and then expressed in HT-1080 cells. Corresponding recombinant proteins were analyzed for their metalloendopeptidase activity using a native substrate, chordin. The results of these assays demonstrated that in comparison with the native TLL1, mutants cleaved chordin and procollagen I at significantly lower rates. CD analyses revealed significant structural differences between the higher order structure of wild-type and mutant variants. Moreover, biosensor-based assays of binding interactions between TLL1 variants and chordin demonstrated a significant decrease in the binding affinities of the mutated variants. The results from this work indicate that mutations detected in TLL1 of ASD6 patients altered its metalloendopeptidase activity, structure, and substrate-binding properties, thereby suggesting a possible pathomechanism of ASD6.pl_PL
dc.language.isoenpl_PL
dc.rightsUznanie autorstwa 3.0 Polska*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/pl/*
dc.subjecttolloid-like 1pl_PL
dc.subjectmutantspl_PL
dc.subjectatrial-septal defect 6pl_PL
dc.titleFunctional and structural studies of tolloid-like 1 mutants associated with atrial-septal defect 6pl_PL
dc.typeinfo:eu-repo/semantics/articlepl_PL
dc.relation.journalBioscience Reportspl_PL
dc.identifier.doi10.1042/BSR20180270-
Appears in Collections:Artykuły (WNŚiT)

Files in This Item:
File Description SizeFormat 
Sieron_Functional_and_structural_studies_of_tolloid_like.pdf1,27 MBAdobe PDFView/Open
Show simple item record


Uznanie Autorstwa 3.0 Polska Creative Commons License Creative Commons