Skip navigation

Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12128/8273
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBochenek, Dariusz-
dc.contributor.authorNiemiec, Przemysław-
dc.contributor.authorAdamczyk, Małgorzata-
dc.contributor.authorStokłosa, Zbigniew-
dc.date.accessioned2019-02-22T07:35:04Z-
dc.date.available2019-02-22T07:35:04Z-
dc.date.issued2019-01-
dc.identifier.citationArchives of Metallurgy and Materials, Vol. 64, iss. 1 (2019), s. 227-233pl_PL
dc.identifier.issn1733-3490-
dc.identifier.urihttp://hdl.handle.net/20.500.12128/8273-
dc.description.abstractThe paper presents the results of research on the influence of sintering temperature on microstructure, DC electrical conductivity, dielectric, ferroelectric and magnetic properties of PbFe1/2Nb1/2O3 ceramics doped by Li in the amount of 5.0% wt., in the abbreviation PLiFN. The ceramic samples of the PLiFN material were obtained by the two-stage synthesis – columbite method and sintered by free sintering methods. Introduction to the basic PbFe1/2Nb1/2O3 composition of the lithium admixture to decrease the electrical conductivity and reduction of dielectric loss. The tests have shown that the increase in sintering temperature orders the PLiFN ceramic microstructure, which has a positive effect on its electrophysical properties. At room temperature, the PLiFN ceramic samples show both ferroelectric and ferromagnetic properties. Considering the functional parameters of the obtained ceramic samples, the optimal technological conditions are 1100°C/2 h.pl_PL
dc.language.isoenpl_PL
dc.rightsUznanie autorstwa-Użycie niekomercyjne-Bez utworów zależnych 3.0 Polska*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/pl/*
dc.subjectferroelectromagneticspl_PL
dc.subjectmultiferroicspl_PL
dc.subjectPFNpl_PL
dc.titleElectrophysical properties of the multicomponent PbFe1/2Nb1/2O3 ceramics doped by Lipl_PL
dc.typeinfo:eu-repo/semantics/articlepl_PL
dc.relation.journalArchives of Metallurgy and Materialspl_PL
dc.identifier.doi10.24425/amm.2019.126242-
dc.description.references[1] H. Schmid, Ferroelectrics 162, 317 (1994). [2] W. Cheong, M. Mostovoy, Nat. Mater. 6, 13 (2007). [3] K.F. Wang, J.-M. Liu, Z.F. Ren, Adv. Phys. 58, 4, 321-448 (2009). [4] D. Bochenek, J. Alloy. Compd. 504, 508-513 (2010). [5] D. Bochenek, J. Dudek, Eur. Phys. J.– Spec. Top. 154, 19-22 (2008). [6] G.A. Smolenskii, A.I. Agranovskaia, S.N. Popov, V.A. Isupov, Sov. Phys.-Tech. Phys. 3 1981 (1958). [7] G.A. Smoleński, W.M. Judin., Fiz. Twierdogo Tela 6, 3668 (1964). [8] Y.E. Roginskaya, Y.N. Venevcev, S.A. Fedulov, Sov. Phys. Crystallogr. 8, 490 (1964). [9] S. Picozzi et al., J. Phys. – Condens. Matt. 20, 43, 434208 (2008). [10] H. Schmid, J. Phys. – Condens. Matt20, 43, 434201 (2008). [11] W. Eerenstein, N. D. Mathur, J. F. Scott, Nature 442, 759 (2006). [12] K. Wójcik, K. Zieleniec, M. Mulata, Ferroelectrics 289, 107 (2003). [13] D. Bochenek, P. Kruk, R. Skulski, P. Wawrzała, J. Electroceram. 26, 8-13 (2011). [14] D. Bochenek, Z. Surowiak, J. Krok-Kowalski, J. Poltierova-Vejpravova, J. Electroceram. 25, 122-129 (2010). [15] D. Bochenek, G. Dercz, D. Oleszak, Arch. Metall. Mater. 56, 4, 1015-1020 (2011). [16] D. Bochenek, Z. Surowiak, J. Alloy. Compd. 480, 732-736 (2009). [17] Y. Xu, Ferroelectric materials and their applications, Elsevier, North – Holland, Amsterdam 1991. [18] R.D. Shannon, Acta Cryst. A 32, 751-767 (1976). [19] O. Raymond, R. Font, N. Juarez-Almodovar, J. Portelies, J.M. Siqueiros, J. Appl. Phys. 97, 084107, 1-8 (2005). [20] M. Kuwabara, J. Am. Ceram. Soc. 73, 5, 1438-1439 (1990). [21] L.B. Kong, J. Ma, Mater. Lett. 51, 95-100 (2001).pl_PL
Appears in Collections:Artykuły (WNŚiT)

Files in This Item:
File Description SizeFormat 
Bochenek_Electrophysical_properties_of_the_multicomponent.pdf5,36 MBAdobe PDFView/Open
Show simple item record


Uznanie autorstwa - użycie niekomercyjne, bez utworów zależnych 3.0 Polska Creative Commons License Creative Commons