Skip navigation

Please use this identifier to cite or link to this item:
Title: Synthesis and characterization of two new TiO2-containing benzothiazole-based imine composites for organic device applications
Authors: Różycka, Anna
Iwan, Agnieszka
Bogdanowicz, Krzysztof Artur
Filapek, Michał
Górska, Natalia
Pociecha, Damian
Malinowski, Marek
Fryń, Patryk
Hreniak, Agnieszka
Rysz, Jakub
Dąbczyński, Paweł
Marzec, Monika
Keywords: benzothiazole; imine composites
Issue Date: 2018
Citation: Beilstein Journal of Nanotechnology, Vol. 9, iss. 1 (2018), s. 721-739
Abstract: The effect of the presence of titanium dioxide in two new imines, (E,E)-(butane-1,4-diyl)bis(oxybutane-4,1-diyl) bis(4- {[(benzo[d][1,3]thiazol-2-yl)methylidene]amino}benzoate) (SP1) and (E)-N-[(benzo[d][1,3]thiazol-2-yl)methylidene]-4-dodecylaniline (SP2), on the properties and stability of imine:TiO2 composites for organic device applications were examined. The investigated titanium dioxide (in anatase form, obtained via the sol–gel method) exhibited a surface area of 59.5 m2/g according to Brunauer–Emmett–Teller theory, and its structure is a combination of both meso- and microporous. The average pore diameter calculated by the Barrett–Joyner–Halenda method was 6.2 nm and the cumulative volume of pores was 0.117 m3/g. The imine SP1 exhibited columnar organization (Col), while SP2 revealed a hexagonal columnar crystalline phase (Colhk). The imine:TiO2 mixtures in various weight ratio (3:0, 3:1, 3:2, 3:3) showed a lower energy gap and HOMO–LUMO energy levels compared to pure TiO2. This implies that TiO2 provides not only a larger surface area for sensitizer adsorption and good electron collection, but also causes a shift of the imine energy levels resulting from intermolecular interaction. Also the temperature of the phase transition was slightly affected with the increase of TiO2 concentration in imine-based composites. The changes observed in the Fourier transform middle-infrared absorption (FT-MIR) spectra confirmed the significant influence of TiO2 on structural properties of both investigated imines. Similar interactions of oxygen vacancies existing on the TiO2 surface with SP1 and SP2 were observed. The imine:TiO2 mixtures showed good air stability and reusability, which demonstrates its potential for organic device applications.
Appears in Collections:Artykuły (WNŚiT)

Files in This Item:
File Description SizeFormat 
Rozycka_Synthesis_and_characterization_of_two_new.pdf11,63 MBAdobe PDFView/Open
Show full item record

Uznanie Autorstwa 3.0 Polska Creative Commons License Creative Commons