Skip navigation

Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12128/9042
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBaron, Karol-
dc.date.accessioned2019-05-07T07:46:26Z-
dc.date.available2019-05-07T07:46:26Z-
dc.date.issued2019-04-05-
dc.identifier.citationAequationes Mathematicae, 05 April 2019pl_PL
dc.identifier.issn0001-9054-
dc.identifier.issn1420-8903-
dc.identifier.urihttp://hdl.handle.net/20.500.12128/9042-
dc.description.abstractGiven a probability space (Ω,A, P), a complete and separable metric space X with the σ-algebra B of all its Borel subsets, a B ⊗A-measurable and contractive in mean f : X × Ω → X, and a Lipschitz F mapping X into a separable Banach space Y we characterize the solvability of the equation ϕ(x) = Ω ϕ (f(x, ω)) P(dω) + F(x) in the class of Lipschitz functions ϕ : X → Y with the aid of the weak limit πf of the sequence of iterates (fn(x, ·))n∈N of f, defined on X × ΩN by f0(x, ω) = x and fn(x, ω) = f fn−1(x, ω), ωn for n ∈ N, and propose a characterization of πf for some special rvfunctions in Hilbert spaces.pl_PL
dc.language.isoenpl_PL
dc.rightsUznanie autorstwa 3.0 Polska*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/pl/*
dc.subjectRandom-valued functionspl_PL
dc.subjectIteratespl_PL
dc.subjectWeak limitpl_PL
dc.subjectIterative equationspl_PL
dc.subjectLipschitzian solutionspl_PL
dc.subjectBochner integralpl_PL
dc.subjectGaussian measurespl_PL
dc.titleWeak limit of iterates of some random-valued functions and its applicationpl_PL
dc.typeinfo:eu-repo/semantics/articlepl_PL
dc.identifier.doi10.1007/s00010-019-00650-z-
Appears in Collections:Artykuły (WNŚiT)

Files in This Item:
File Description SizeFormat 
Baron_Weak_limit_of_iterates.pdf449,24 kBAdobe PDFView/Open
Show simple item record


Uznanie Autorstwa 3.0 Polska Creative Commons License Creative Commons