Skip navigation

Zastosuj identyfikator do podlinkowania lub zacytowania tej pozycji: http://hdl.handle.net/20.500.12128/939
Tytuł: Fractal Patterns from the Dynamics of Combined Polynomial Root Finding Methods
Autor: Gdawiec, Krzysztof
Słowa kluczowe: fractal; root finding; iteration; polynomiography
Data wydania: 2017
Źródło: Nonlinear Dynamics, Vol. 90, iss. 4 (2017), s. 2457-2479
Abstrakt: Fractal patterns generated in the complex plane by root finding methods are well known in the literature. In the generation methods of these fractals only one root finding method is used. In this paper, we propose the use of a combination of root finding methods in the generation of fractal patterns. We use three approaches to combine the methods: (1) the use of different combinations, e.g. affine and s-convex combination, (2) the use of iteration processes from fixed point theory, (3) multistep polynomiography. All the proposed approaches allow us to obtain new and diverse fractal patterns that can be used, for instance, as textile or ceramics patterns. Moreover, we study the proposed methods using five different measures: average number of iterations, convergence area index, generation time, fractal dimension and Wada measure. The computational experiments show that the dependence of the measures on the parameters used in the methods is in most cases a non-trivial, complex and non-monotonic function.
URI: http://hdl.handle.net/20.500.12128/939
DOI: 10.1007/s11071-017-3813-6
ISSN: 0924-090X
Pojawia się w kolekcji:Artykuły (WINOM)

Pliki tej pozycji:
Plik Opis RozmiarFormat 
Gdawiec_Fractal_patterns_from_the_dynamics_of_combined_polynomial_root.pdf8,96 MBAdobe PDFPrzejrzyj / Otwórz
Pokaż pełny rekord


Uznanie Autorstwa 3.0 Polska Creative Commons Creative Commons