Skip navigation

Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12128/9402
Title: On a unique ergodicity of some Markov processes
Authors: Kapica, Rafał
Szarek, Tomasz
Ślęczka, Maciej
Keywords: Ergodicity of Markov families; Invariant measures; Stochastic heat equations
Issue Date: 2012
Citation: Potential Analysis, Vol. 36 (2012), s. 589-606
Abstract: It is proved that the sufficient condition for the uniqueness of an invariant measure for Markov processes with the strong asymptotic Feller property formulated by Hairer and Mattingly (Ann Math 164(3):993–1032, 2006) entails the existence of at most one invariant measure for e-processes as well. Some application to timehomogeneous Markov processes associated with a nonlinear heat equation driven by an impulsive noise is also given.
URI: http://hdl.handle.net/20.500.12128/9402
DOI: 10.1007/s11118-011-9242-0
ISSN: 0926-2601
1572-929X
Appears in Collections:Artykuły (WNŚiT)

Files in This Item:
File Description SizeFormat 
Kapica_On_a_unique_ergodicity_of_some.pdf527,77 kBAdobe PDFView/Open
Show full item record


Uznanie autorstwa - użycie niekomercyjne 3.0 Polska Creative Commons License Creative Commons