Skip navigation

Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12128/21141
Title: On the Influence of the Menthol Moiety on the Transport Properties of a Homologue Series of Functionalized Bis(trifluoromethylsulfonyl)imide Room-Temperature Ionic Liquids: A Quest for the Structure−Property Relationship
Authors: Feder-Kubis, Joanna
Gardas, Ramesh L.
Geppert-Rybczyńska, Monika
Keywords: ionic liquids; the menthol moiety; transport properties
Issue Date: 2021
Citation: Journal of Physical Chemistry B, Vol. 30, iss. 125 (2021) s. 8502-8510
Abstract: This study explores the transport properties of bis(trifluoromethylsulfonyl)imide-based ionic liquids with a naturally derived (1R,2S,5R)-(−)-menthol moiety in the cationic part. In particular, we investigated the dependence of the dynamic viscosity and electrical conductivity as functions of the alkyl chain length. An important finding of this study is that both properties show nonmonotonic behavior with respect to the alkyl chain length. The nonmonotonic dependency is an obstacle for establishing the relationships between the structure and transport properties of homologues. To overcome this difficulty, we recommend fast property screening using a theoretical model that we developed, which allows for efficient viscosity prediction by means of the group contribution method. As demonstrated in this study, the model allows for reliable predictions of viscosity in the studied series with an overall relative deviation of less than 8%.
URI: http://hdl.handle.net/20.500.12128/21141
DOI: 10.1021/acs.jpcb.1c03827
ISSN: 1520-6106
1520-5207
Appears in Collections:Artykuły (WNŚiT)

Files in This Item:
File Description SizeFormat 
Feder_Kubis_On_the_Influence.pdf1,58 MBAdobe PDFView/Open
Show full item record


Uznanie Autorstwa 3.0 Polska Creative Commons License Creative Commons