Skip navigation

Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12128/22039
Title: Revisiting properties of CaCoSinO2n+2. Crystal and electronic structure
Authors: Szubka, Magdalena
Zajdel, Paweł
Fijałkowski, Marcin
Talik, Ewa
Balerna, A.
Cestelli-Guidi, M.
Romani, M.
Łażewski, J.
Jochyn, P. T.
Keywords: Pyroxenes; XAS; XRD; XPS; DFT; SEM
Issue Date: 2022
Citation: "Journal of Magnetism and Magnetic Materials" (2022), Vol. 546, art. no. 168858, s. 1-8
Abstract: In a public space there are several reports of materials with general stoichiometry CaCoSinO2n+2. Pyroxene CaCoSi2O6 is probably the best-known representative for n = 2 but not much is known about materials with n = 3 and n = 4. In this study, attempts were carried out to synthesize those phantom materials and it was found that they do not exist as a single phase. A quantitative XRD analysis revealed that their chemical composition is correct but the formula should be written as CaCoSi2O6 + (n-2)SiO2. Similar qualitative conclusions were drawn from investigation of magnetic (DC magnetometry) and electronic properties using X-ray Photoelectron Spectroscopy (XPS) and Si K edge X-ray Absorption Spectroscopy (XAS). Additionally, the DFT ab initio calculations were carried out to obtain electronic signature from band structure of CaCoSi2O6. The apparent influence of the excess of SiO2 on magnetic properties of this “series” can be understood in terms of presence and suppression of secondary phases like Ca2CoSi2O7, which form when the starting materials are not homogenized properly. Addition of surplus SiO2 suppresses their formation leaving clear signature from CaCoSi2O6, which also can be synthesized from stoichiometric mixture using proper techniques.
URI: http://hdl.handle.net/20.500.12128/22039
DOI: 10.1016/j.jmmm.2021.168858
ISSN: 0304-8853
Appears in Collections:Artykuły (WNŚiT)

Files in This Item:
File Description SizeFormat 
Szubka_Zajdel_revisting_properties_of.pdf7,23 MBAdobe PDFView/Open
Show full item record


Uznanie autorstwa - użycie niekomercyjne, bez utworów zależnych 3.0 Polska Creative Commons License Creative Commons