Skip navigation

Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12128/7257
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBartkowska, Joanna Agnieszka-
dc.contributor.authorBochenek, Dariusz-
dc.contributor.authorNiemiec, Przemysław-
dc.date.accessioned2018-11-27T10:39:40Z-
dc.date.available2018-11-27T10:39:40Z-
dc.date.issued2018-12-
dc.identifier.citationApplied Physics A, Vol. 124 (2018), Art. No. 823pl_PL
dc.identifier.issn0947-8396-
dc.identifier.urihttp://hdl.handle.net/20.500.12128/7257-
dc.description.abstractAurivillius-type ceramics Bi6Fe2−xMnxTi3O18 x = 0, 0.3, 0.9, 1.5 were obtained by a solid-state reaction method using high-purity TiO2, Bi2O3, Fe2O3 and Mn2O3 powders. The milled powder was calcined at 1113 K for 4 h. After calcination, the powder was milled again than pressed into pellets and sintered at 1213 K for 4 h. It was detected that the addition of manganese ions to the multiferroic five-layer Aurivillius-type structure affects the size of the grains. It was found that, the certain amount of manganese ions causes that the polarization of the material doped by them, have the direction opposite to the direction of the applied electric field. The doped material behaves like dia-electric material. The presented research complements the research concerning the Aurivillius ceramics doped with manganese. An attempt was made to explain the reasons for the negative values of dielectric constant and dielectric loss, that occur in manganese-doped five-layer Aurivillius type ceramics and which have not been described in the literature so far.pl_PL
dc.language.isoenpl_PL
dc.rightsUznanie autorstwa 3.0 Polska*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/pl/*
dc.subjectAurivillius phasepl_PL
dc.subjectdielectric constantpl_PL
dc.subjectEDSpl_PL
dc.subjectmicrostructurepl_PL
dc.subjectmultiferroicspl_PL
dc.titleMultiferroic Aurivillius-type Bi6 Fe 2−xMnxTi3O18 (0 ≤ x ≤ 1.5) ceramics with negative dielectric constantpl_PL
dc.typeinfo:eu-repo/semantics/articlepl_PL
dc.relation.journalApplied Physics Apl_PL
dc.identifier.doi10.1007/s00339-018-2247-4-
dc.description.references1. J.A. Bartkowska, R. Zachariasz, D. Bochenek. J. Ilczuk, Arch. Met. Mater. 58(4), 1401 (2013) 2. J.A. Bartkowska, J. Dercz, J. Exp. Theor. Phys. 117(5), 875 (2013) 3. B. Aurivillius, Arkiv Kemi 1463(499), 463 (1949) 4. E.C. Subbarao, J. Am. Ceram. Soc. 45, 166 (1962) 5. H.J. Kim, J.W. Kim, E.J. Kim, J.Y. Choi, C.M. Raghavan,. W.-J. Kim, M.H. Kim, K. Song, J.-W. Kim, S.S. Kim, Ferroelectrics 465, 68 (2014) 6. Z. Wang, Y. Zhang, Y. Wang, Y. Li, H. Luo, J. Li, D. Viehland, ACS Nano 8(8), 7793 (2014) 7. S.N. Achary, O.D. Jayakumar, A.K. Tyagi, Functional Materials (Elsevier Inc., USA, 2012), p. 159 8. Z. Zhou, N.X. Sun, in Multiferroic nanostructures. Composite Magnetoelectrics (Elsevier Inc., USA, 2015), p. 71 9. N.J. Joshi, G.S. Grewal, V. Shrinet, T.P. Govindan, A. Pratap, IEEE Trans. Dielectr. Electr. Insul. 19(1), 83 (2012) 10. A.J.C. Buurma, G.R. Blake, T.T.M. Palstra, U. Adem, Multiferroic Materials: Physics and Properties(Elsevier Inc., USA, 2016), p. 1 11. T. Jia, H. Kimura, Z. Cheng, H. Zhao, Sci. Rep. 6, 31867 (2016). https ://doi.org/10.1038/srep3 1867 12. X. Zuo, J. Yang, B. Yuan, D. Song, X. Tang, K. Zhang, X. Zhu, W. Song, J. Dai, Y. Sun, RSC Adv. 4, 46704 (2014) 13. M. Morawiec, A. Grajcar, J. Achiev. Mater. Manuf. Eng. 80, 11 (2017) 14. M. Villegas, T. Jardiel, A.C. Caballero, J.F. Fernandez, J. Electroceram. 13, 543 JF (2004) 15. W. Bai, G. Chen, J.Y. Zhu, J. Yang, T. Lin, X.J. Meng, X.D. Tang, C.G. Duan, J.H. Chu, Appl. Phys. Lett. 100, 0829021 (2012) 16. K. Tang, W. Bai, J. Liu, J. Yang, Y. Zhang, C.G. Duana, X. Tanga, J. Chu, Ceram. Int. 41, S185 (2015) 17. B. Yuan, J. Yang, J. Chen, X.Z. Zuo, L.H. Yin, X.W. Tang, X.B. Zhu, J.M. Dai, W.H. Song, Y.P. Sun, Appl. Phys. Lett. 104, 0624131 (2014) 18. F. Kublel, H. Schmid, Ferroelectrics 129, 101 (1992) 19. A. Srinivas, D.W. Kim, K.S. Hong, S.V. Suryanarayana, Appl. Phys. Lett. 83, 2217 (2003) 20. X.Y. Mao, W. Wang, X.B. Chen, Solid State Commun. 147, 186 (2008) 21. A.K. Srivastava, A.C. Pandey, R. Kripal, S.H. Lee, Soft Mater. 12, 284 (2014) 22. E. Axelrod, A. Puzenko, Y. Haruvy, R. Reisfeld, Y. Feldman, J. Non Cryst. Solids 352, 4166 (2006) 23. J.A. Bartkowska, D. Bochenek, J. Mater. Sci. Mater. Electron. 29(20), 17262 (2018) 24. D. Bochenek, P. Niemiec, P. Guzdek, M. Wzorek, Mat. Chem. Phys. 195, 199 (2017) 25. H.S. Shulman, D. Damjanovic, N. Setter, J. Am. Ceram. Soc. 83(3), 528 (2000)pl_PL
Appears in Collections:Artykuły (WNŚiT)

Files in This Item:
File Description SizeFormat 
Bartkowska_Multiferroic_Aurivillius_type.pdf4,36 MBAdobe PDFView/Open
Show simple item record


Uznanie Autorstwa 3.0 Polska Creative Commons License Creative Commons